
CS223, 4/28/2010
Lecture 13

Imperative features of SML -- ref and array types

1. References and Arrays -- mutable state in SML
[See Paulson, Chapter 8, p313.]

References:

 type 'a ref

 val ref : 'a -> 'a ref
 val ! : 'a ref -> 'a
 val := : 'a ref * 'a -> unit

ref counts as a constructor and can be used in patterns

 fun inc (r as ref n) = r := n+1

Imperative version of factorial:

 fun fact n =
 let val c = ref n
 val r = ref 1
 in while !c > 0 do
 (r := !r * !c; c := !c - 1);
 !r
 end;

Imperative version of summing a list:

 fun sum l =
 let val s = ref 0
 val m = ref l
 in while not(null(!m)) do
 (s := !s + hd(!m); m := tl(!m));
 !s
 end;

or, a semi-imperative version:

 fun sum l =

 let val s = ref 0
 fun loop nil = ()
 | loop (x::xs) = (s := !s + x; loop xs)
 in loop l;
 !s
 end;

Mutable lists (like scheme):

 datatype 'a mlist = NIL | CONS of 'a ref * 'a mlist ref

 val l = CONS(ref 3, CONS(ref 4, ref(NIL)))

 fun cons (x, l) = CONS(ref x, ref l)
 val l = cons(3, cons(4, NIL))

 fun gethd NIL = raise Empty
 | gethd (CONS(ref x,_)) = x

 fun sethd (NIL, x) = raise Empty
 | sethd (CONS(r,_), x) = r := x

 fun gettl NIL = raise Empty
 | gettl (CONS(_, ref x)) = x

 fun settl (NIL, x) = raise Empty
 | settl (CONS(_,r), x) = r := x

 fun lastCons NIL = raise Empty
 | lastCons (l as CONS(_,ref NIL)) = l
 | lastCons (CONS(_,ref l)) = lastCons l

 fun mappend(NIL, l) = l
 | mappend(l1, l2) = settl(lastCons l1, l2)

Graphs:

It is not hard to represent acyclic directed graphs in SML
using datatypes:

datatype 'a graph = Node of 'a * 'a graph list

Then the graph

could be represented by:

 val g = let val n4 = Node(4,[])
 val n2 = Node(2,[n4])
 val n3 = Node(3,[n4])
 in Node(1, [n2,n3])
 end

But could we tell the difference between this value
and the following?

 val g' = let val n2 = Node(2,[Node(4,[])])
 val n3 = Node(3,[Node(4,[])])
 in Node(1, [n2,n3])
 end

which represents the "tree" graph:

The difference only matters if the Node has
state, e.g. Node(ref(4),[]).

How about cyclic graphs, like

We need references to tie the knot in the
data structure.

 datatype 'a node
 = Node of 'a * 'a graph list ref

 val g = let val asucc = ref []
 val anode = Node("a", asucc)
 val bnode = Node("b", ref [anode])
 in asucc := [bnode];
 anode
 end;

Note: In Haskell, we could do something like

 data Graph a = Node a [Graph a]

 anode = Node "a" [bnode]
 bnode = Node "b" [anode]

This works for simple, fixed shape graphs,
but it doesn't scale to more complicated
graphs that need to be "computed".

More complicated graphs would involve two types,
nodes and edges, which both might contain values
(e.g. labels or weights or costs for edges).

--

Unification:

Terms constructed out of variables and function symbols
(each with its arty). Here is a sample term "language".

 (* infinite collection of variables *)
 type variable = string

 datatype term
 = V of variable (* variables as terms *)
 | A | B | C (* constants (0-ary functions) *)
 | F of term | G of term (* some unary functions *)
 | H of term * term (* a binary function *)

Given two terms, say

 H(F(V "x"), G(V "y")) =?= H(F(G A), V "z")

can we find a substitution (mapping from variables to
terms) making the terms equal?

 type subst = (string * term) list

In the example, the substitution

 val s = [("x", G A), ("z", G(V "y"))]

will work:

 app(s, term1) = app(s, term2) = H(F(G A), G(V "y"))

where

 val term1 = H(F(V "x"), G(V "y"))
 val term2 = H(F(G A), V "z")

Here is a unification algorithm:
We assume auxiliary functions:

 val occurs : variable * term -> bool
 val appsub : subst * term -> term
 val compose : subst * subst -> subst

 (* unify : term * term -> subst option *)
 fun unify (A,A) = SOME []
 | unify (B,B) = SOME []
 | unify (C,C) = SOME []
 | unify (V s1, V s2) =
 if s1 = s2 then SOME []
 else SOME[(s1, V s2)]
 | unify ((V s, t) | (t, V s)) = (* OR pattern! *)
 if occurs(s,t) then NONE
 else SOME [(s,t)]
 | unify (F t1, F t2) = unify (t1,t2)
 | unify (G t1, G t2) = unify (t1,t2)
 | unify (H(t1,t2), H(t3,t4)) =
 (case unify(t1,t3)
 of SOME sub1 =>
 (case unify(app(sub1,t2),app(sub1,t4))
 of SOME sub2 => SOME(compose(sub2,sub1))
 | NONE => NONE)
 | NONE => NONE)
 | unify _ = NONE (* e.g. head function symbols don't match *)

This involves a lot of application of substitutions and
composition of substitutions. We can simplify unification
and make it more efficient by representing variables using
refs:

 (* note that varstate and term are mutually recursive
datatypes,
 * where term depends on varstate through the associated type
 * abbreviation variable *)

 datatype varstate
 = OPEN
 | INST of term

 and term
 = V of variable (* infinite collection of variables *)
 | A | B | C (* constants (0-ary function symbols) *)
 | F of term | G of term (* some unary functions *)
 | H of term * term (* a binary function *)

 withtype variable = varstate ref

 val x = ref OPEN
 val y = ref OPEN
 val z = ref OPEN
 val term1 = H(F(V x), G(V y))
 val term2 = H(F(G A), V z)

Now the unification function looks like:

 (* unify : term * term -> bool *)
 fun unify (A,A) = true
 | unify (B,B) = true
 | unify (C,C) = true
 | unify (V (v1 as ref(OPEN)), V (v2 as ref(OPEN))) =
 if v1 = v2 then true
 else (v1 := INST(V v2); true)
 | unify (V v1, V v2) =
 unify(varToTerm v1, varToTerm v2)
 | unify ((V v, t) | (t, V v)) = (* OR pattern! *)
 (case varToTerm v
 of V(ref(OPEN)) =>
 if occurs(v,t) then false
 else (v := INST t; true)
 | t' => unify (t',t))
 | unify (F t1, F t2) = unify (t1,t2)

 | unify (G t1, G t2) = unify (t1,t2)
 | unify (H(t1,t2), H(t3,t4)) =
 unify(t1,t3) andalso unify(t2,t4)
 | unify _ = false

where varToTerm maps an instantiated variable to
the term that instantiated it:

 fun varToTerm(ref(INST t)) =
 (case t
 of V v => varToTerm v
 | _ => t)
 | varToTerm(v as (ref OPEN)) = V v

[See the source files unify1.sml and unify2.sml for complete
tested code for the unification example.]

Arrays:

Module Array:

 type 'a array
 val array : int * 'a -> 'a array
 val sub : 'a array * int -> 'a
 val update: 'a array * int * 'a -> unit

See Array module spec in Basis Library documentation.

Hash tables:

