OBJECT ADAPTER

By
Sachin Bhargava



Structural Object Patterns

* Concerned with how classes and objects are
composed to form larger structures

 Structural object patterns describe ways to
compose objects to realize new functionality

* This added flexibility of object composition
comes from the ability to change the
composition at run-time, which is impossible
with static class composition






Intent

Convert the Interface of class into another
interface that the client expects

Adapter lets classes work together that couldn’t
otherwise because of incompatible interfaces

Basically, this means that we need a way to
create a new interface for an object that does the
right stuff but has the wrong interface

AKA Wrapper



When Do | Use This?

* You want to use a method that someone else
has written because it does something that
you heed

* You can’t directly incorporate the routine into
your program

* The interface or the way of calling the code is
not exactly equivalent to the way that its
related objects need to use it



Example

e Say you have 2 Requirements:

— You have to create classes for points, triangles, and
squares that have the behavior “display” or
“undisplay”

— The client objects should not have to know whether
they actually have a point, a triangle, or a square.
They just want to know that they have one of these
shapes

— Basically, you want to free the client object from
knowing the details so that it can treat the details in a
common way



Example Continued...

e 2 Benefits:

— Allows client object to deal with these objects in
the same way = freed from having to pay attention
to their differences

— Enables one to add different kinds of shapes in the
future without having to change the clients



Solution

* Create a Shape class and derive Points, Lines,
and Squares from it

* Define an interface in the Shape class for its
behavior and then implement it in each of the
derived classes

* Some behaviors of the Shape class:

— Set Shape location, get Shape location, display
Shape, fill Shape, set Shape color, undisplay Shape



Requirements Change!

* Now, | am asked to implement a circle, a new
kind of-Shape

* | do not want to write all of the methods
(display, fill, undisplay, etc..) for circle

* | find out that a friend already wrote a
MyCircle Class for circles that pretty much
does what | need to do, but all the method
names are different




e Cannot directly use the MyCircle class because
we want to preserve polymorphic behavior
with Shape

* Probably not the best idea to go go ahead and
change her method names — may cause
unanticipated side effects



Solution

 Make a new class that does derive from shape
and therefore implements shape’s interface
but avoids rewriting the circle implementation
in MyCircle
— Class Circle derived from Shape
— Circle contains MyCircle

— Circle passes request made to the Circle object on
through to the MyCircle object



Discuss Code Example



References

e Design Patterns Elements of Reusable Object-
Oriented Software
— Erich Gamma
— Richard Helm
— Ralph Johnson
— John Vlissides
e Design Patterns Explained A New Perspective on
Object Oriented Design
— Alan Shalloway
— James R. Trott



