
OBJECT ADAPTER

By

Sachin Bhargava

Structural Object Patterns

• Concerned with how classes and objects are
composed to form larger structures

• Structural object patterns describe ways to
compose objects to realize new functionality

• This added flexibility of object composition
comes from the ability to change the
composition at run-time, which is impossible
with static class composition

Adapter

Intent

• Convert the Interface of class into another
interface that the client expects

• Adapter lets classes work together that couldn’t
otherwise because of incompatible interfaces

• Basically, this means that we need a way to
create a new interface for an object that does the
right stuff but has the wrong interface

• AKA Wrapper

When Do I Use This?

• You want to use a method that someone else
has written because it does something that
you need

• You can’t directly incorporate the routine into
your program

• The interface or the way of calling the code is
not exactly equivalent to the way that its
related objects need to use it

Example

• Say you have 2 Requirements:
– You have to create classes for points, triangles, and

squares that have the behavior “display” or
“undisplay”

– The client objects should not have to know whether
they actually have a point, a triangle, or a square.
They just want to know that they have one of these
shapes

– Basically, you want to free the client object from
knowing the details so that it can treat the details in a
common way

Example Continued…

• 2 Benefits:

– Allows client object to deal with these objects in
the same way – freed from having to pay attention
to their differences

– Enables one to add different kinds of shapes in the
future without having to change the clients

Solution

• Create a Shape class and derive Points, Lines,
and Squares from it

• Define an interface in the Shape class for its
behavior and then implement it in each of the
derived classes

• Some behaviors of the Shape class:

– Set Shape location, get Shape location, display
Shape, fill Shape, set Shape color, undisplay Shape

Requirements Change!

• Now, I am asked to implement a circle, a new
kind of Shape

• I do not want to write all of the methods
(display, fill, undisplay, etc..) for circle

• I find out that a friend already wrote a
MyCircle Class for circles that pretty much
does what I need to do, but all the method
names are different

• Cannot directly use the MyCircle class because
we want to preserve polymorphic behavior
with Shape

• Probably not the best idea to go go ahead and
change her method names – may cause
unanticipated side effects

Solution

• Make a new class that does derive from shape
and therefore implements shape’s interface
but avoids rewriting the circle implementation
in MyCircle

– Class Circle derived from Shape

– Circle contains MyCircle

– Circle passes request made to the Circle object on
through to the MyCircle object

Discuss Code Example

References

• Design Patterns Elements of Reusable Object-
Oriented Software
– Erich Gamma

– Richard Helm

– Ralph Johnson

– John Vlissides

• Design Patterns Explained A New Perspective on
Object Oriented Design
– Alan Shalloway

– James R. Trott

