Flyweight

Many objects with some shared properties
Michael Abramowitz

Presentation Layout

» Elements of the
Flyweight
- Classification / Name
> Problem
> Solution
- Elements of Pattern

» Forest Example

Elements of the Flyweight -
Classification / Name

» Structural Object Pattern
- Deals with the composition of objects
- Use pattern as a way to assemble objects
- Ease design by identifying a simple way to realize
relationships between entities
» Flyweight
- Organize large number of fine grained objects
efficiently
- Name is derived from boxing weight class

- Basically makes objects lighter by storing shared
info about objects in one place (the flyweight)

Sid Smith (First Flyweight
Champion)

Elements of Flyweight - Problem

» Program requires a large number of objects
» Storage costs high as a result

» Examples:

- Word Processor (common usage)
- Each character as an object
- A-z : flyweights
- Seeing the Forest for the Trees (my example)
- Each tree as an object
- Tree Type : flyweight

Elements of Flyweight - Solution

» Separate object properties by following

> INTRINSIC
- Information that is constant
- Can be removed from each individual granular object
- STORED IN FLYWEIGHT OBJECT
- Referenced by granular objects with the properties

o EXTRINSIC
- Information must is determined by context

- Values that can be calculated on the spot
- STORED IN CLIENT ALONG WITH REFERENCE TO FLYWEIGHT
» Objects are organized by intrinsic information
similarities
» Allows creation of many objects differing only in
context

Elements of Flyweight Pattern

v

Flyweight Interface
> Abstract - set of methods all flyweights will have in common
- EXAMPLE: TreeType Interface
Flyweight
> Inherits of Flyweight Interface
- Contains all intrinsic info, as well as how to calculate extrinsic info
> EXAMPLE: PineTree and RedWood
Flyweight Factory
- Dispense flyweights when requested)
o EXAMPLE: TreeTypeFactor
Client

> In creating a new object, assigns flyweight to it. Using Flyweight
Factory method

o Combines intrinsic reference and extrinsic state
o EXAMPLE: aTree

v

v

v

From Book

FlyweightFactory flyweights Flyweight

S >

+GetFlyweight(in key} . +Oparation(in extrinsicStata)

: Jia AN
if fiyweights[key] exists le
return existing flywaeight
else
create new fliyweight
add to pool of flyweights
return new fhyweight

Client UnsharedConcreteFlyweight ConcreteFlyweight
intrinsicState FallState
+Opearation(in extrinsicStata) +Dperation{in extrinsicState)

“‘)

Forest Example

TreaTypaFactory

+netGetTreaType (sting aTreaType)

+TreeTypeFactory()

aTree

-xCoord
-yCoord
_|-TreeTypa

+displayTree()

+a Tree(int xCoord, int yCoord, string aTreeType)

<< |nterface>=
TreeType
+grow(int Age, int aHight)
+string display Tree()
,j}. il
PinaTrea RedWood
=tregMame -tre eMame
-barkColor -barkColor
leafColor =leafColor
-leafType -leafType
+gow(int Age, int aHeight}... +grow(int Age, int aHeight)
+string display Tree{) +sring display Tree()
/N /N

Forest Exa

» TreeType
- (FlyWeight interface)
- (interface)

» RedWood

- FlyWeight

> Implements TreeType
» PineTree

> FlyWeight

- Implements TreeType
» TreeTypeFactory
- FlyWeight Factroy
- Returns RedWood or PineTree ob
- Same instance each time
» alree
> Client
- Has TreeType fields that uses factory
- xCoord, yCoord are extrinsic
» ForestDriver
> Creates a Forest Catalog

Tre
alree.jav

\

