
DECORATOR
Design Pattern

Dray Brown
January 19, 2011

WHAT IS THE DECORATOR
PATTERN?

• A design pattern that allows additional responsibilities to be
added to a single object dynamically.

• New functionality can be added to an object without
modifying similar objects.

• Done by adding a transparent layer (also known as a
“Wrapper”).

Component

Concrete Component Decorator

ConcreteDecoratorA ConcreteDecoratorB

(Object Interface)

(The Objects) (Reference to Component)

(new object responsibility) (new object responsibility)

Mirror

Car

I am a car.

Car

I am a car.

I am sporty!

Car

I am a car.
I am expensive.

Car

I am a car.
I am expensive.
I am sporty!

 CAR DESCRIPTIONS

• Standard car statement - “I am a car.”

• Sporty car statement - “I am sporty!”

• Expensive car statement - “I am expensive.”

• Expensive & Sporty car statement - “I am expensive. I am
sporty!”

Car
“I am a car”

Component

Concrete Component Decorator

ConcreteDecoratorA ConcreteDecoratorB

(Object Interface)

(The Objects) (Reference to Component)

(new object responsibility) (new object responsibility)

“ I am a car.”

Car Component

“ I am a car.”

Mirror

“ I am a car.”
“I am sporty!”

“ I am a car.”
“I am expensive.”

IMPLEMENTATION USING JAVA

public class Car {
	

 public Car(){	

	

 }
	

	

 public String statement(){
	

 	

 return "I am a car.";	

	

	

 }
	

}

public abstract class Decorator extends Car{
	

 public abstract String statement();
}

public class Sporty extends Decorator{
Car auto;
	

	

 public Sporty (Car sport){
	

 	

 auto = sport;
	

 }
	

 public String statement(){
	

 	

 return auto.statement() + " I am sporty.";
	

 }
}

public class DecorateMe { //Tester
	

 public static void main (String [] args){
	

 	

	

 	

 Car mercedes = new Car();
	

 	

 mercedes = new Expensive(mercedes);
	

 	

	

 	

 Car honda = new Car();
	

 	

	

 	

 Car mitsubishi = new Car();
	

 	

 mitsubishi = new Sporty(mitsubishi);
	

 	

	

 	

 Car porsche = new Car();
	

 	

 porsche = new Sporty(porsche);
	

 	

 porsche = new Expensive(porsche);
	

 	

	

 	

 System.out.println("I am a Honda. " +honda.statement());
	

 	

 System.out.println("I am a Mitsubishi, " +mitsubishi.statement());
	

 	

 System.out.println("I am a Mercedes. " +mercedes.statement());
	

 	

 System.out.println("I am a Porsche. " +porsche.statement());
	

 }
	

}

public class Expensive extends Car {
	 Car auto;
	
	 public Expensive (Car das){
	 	 auto = das;
	 	 }
	 public String statement(){
	 	 return auto.statement() + " I am expensive.";
	 }
}

REAL WORLD EXAMPLE

http://www.mcmaster.com/#ball-valves/=anitas

McMaster-Carr website

