Composite Design Pattern

Jonathan Williams

CSPP 51023 - OO Architecture,
Design & Methodology

Composite Definition

* Gang of Four Definition:

— Allow you to compose objects into tree structures to represent part-
whole hierarchies. Composite lets clients treat individual objects and
compositions of objects uniformly.1

* My interpretation:

— If you have objects within the domain that have a hierarchical
organization or if you have objects that need to be treated uniformly,
use the structural composite pattern.

Possible examples where Composite might makes sense

* Menus with menu items, which could also be a menu
itself.

* Employee manager to subordinate hierarchies.
* Colleges with divisions that have departments.

* Directories with files, but within a directory there
could be other directories.

The Composite pattern not only allows you to represent
the objects as a tree but also allows you to easily
manipulate individual and composite objects in the same
way.?

Composite Class Diagram?

Client

Utilizes component interface
to “uniformly” manipulate
objects within the composite

group.

Component

Abstract class that defines the
interface to all objects in the
composed group (leafs &
compositions) for
manipulation.

Implements default behavior
that is used by all classes.

Leaf

Represents a primitive object
or a composite without
components.

Implements behavior.

Client LS a5

<< primitive==

+operationt(}
+operation2()

<< |nterface>>
Component

+operation(} * = chikdren
+operation2()

Composite
+operationt() ﬁ
+0peration2|)
+addComponent()
+removeComponent|)
+getComponant()
+getComponentCount()

Source: Erich Gamma, et al, “Composite" Design Patterns. (Boston: Addison-Wesley, 1995) 164.

Composite

* Extends base class that represents primitive objects.
* Maintains a collection of children components.
* Implements child operations in the component

interface.

Composite Design Pattern

Graphical representation of a
Composite object structure

aComposite

—/

aleaf

aComposite

}a Leaf

aleaf

aleaf aComposite

/

AN

aleaf

aleaf

Source: Erich Gamma, et al, “Composite" Design Patterns. (Boston: Addison-Wesley, 1995) 165.

Composite Design Pattern

Example code 1 of 2

Component interface Composite

Graphic.java | CompasiteGraphic.jawva | SimpleGraphicjava | Clientjava SlaRliGiagp~ CompositeGraphicjava \SippleQmalisiziae Wlicnkizi

inport jawa.io.%*;

<« Component interface import jawa.util. ArrayList:
public interface Graphic {
public woid add (Graphic gl:;
public void remove (Graphic g);

s Compozite
public class CompositeGraphic inplements Graphic |

public Graphic get (int index): private Arraylist<Graphic: children = new ArrayLlist<Graphic:():
» 1:‘”];11': Vﬁ?d paint(): public void paint() {
¥ end graphic s#/paint operation
for{Graphic g: children) 4
g.paint (]

¥ S end for
+~ end paint

public void addi{Graphic g) 1
children.addig):
T~ end add

public void remowve({Graphic gl
if (children.contain=(g))4{
children. remove(qg)
o end 1f
T /7 end remnove

public Graphic get{int inde=){
if (index ¢ children.=size()){
return children. get{inde=x):
T oo end if
return children.get(1);
rT-send get
T S/ conpozite

Composite Design Pattern 6

Example code 2 of 2

Leaf Client example
Graphic.java | CompasiteGraphic javs” SimpleGraphicjava | Clientjava Graphic,java | CompaositeGraphicjava | SimpleGraphic,java” Clientjava
inport jawva.io. = ¢ peeudo code code for a Client

import jawva.util . ArravList public cla==s Clientq

< gilwen a graphic can call paint regardless 1f
<< Leat

SS1t's a leaf or Composite
rublic cla=z=s SimpleGraphic implement= Graphicd F

puhligrﬁiiiagiint e paint{Grgph%? gl

o d i g.palnp ;

! =he hain oo end paint

public void add(Graphic g){
<+ leaf can't do this T v end Client

P o end add

public woid remove (Graphic g)i{
leaf can't do this
} o end remcove

public Graphic get{int index){
throw nev IllegalirgumnentEzceptioni"i=s invalid");
} ~ end get

} #¢ end SimpleGraphic

Composite Design Pattern 7

Soureces

1. Erich Gamma, et al, “Composite.” Design Patterns. (Boston:
Addison-Wesley, 1995) 163-174.

2. Ralph Johnson, “An Introduction to Patterns” The Patterns
Handbook: Techniques, Strategies, and Applications. Ed.
Linda Rising. (New York: Cambridge University Press, 1998)
354,

3. Erich Gamma 354-357.

