Bridge Pattern

aka handle/body

Dan Sullivan

Pattern Description

* Meant to “decouple an abstraction from its
implementation so that the two can vary
independently”.

e Separates abstraction and implementation
into separate class hierarchies.

* The bridge is the relationship between the
abstraction and the implementation
hierarchies.

More about the pattern

* |t’s a structural object pattern.

e Often confused with the adapter pattern,
which uses multiple inheritance.

 Don’t use it when you have a single
implementor.

UML Representation

Implementor

Abstraction +implementation()

-impl : Implementor

Jimpl.implementation() 8

RefinedAbstraction Concretelmplementorl Concretelmplementor2

+refinedFunction() +implementation() +implementation()

curce nip /Jen mkigeda org iwikl JBridou_pattem

Applications

* When an abstraction has varied implementations.

* When Implementations and abstractions both
require distinct subclass extensibility.

 Where you don’t want changes in implementation
to require recompilation of abstraction classes.

Abstractions

Time {
tellQ; // low-level

normalTime Time {

TimeAPi ; ’
public normalTime(hr, min, seconds, TimeAPI drawingAPI)
{
= hr; . = min; . = seconds;
= drawingAPI;

tellQ) {
drawingAPI.tellTime(Chr,

Implementors

TimeAPI {
tellTime(hr, ' seconds);

militaryTime TimeAPI {
tellTime(hr, min, seconds) {
System. . format(" " hr,min);

civilianTime TimeAPI {
tellTime(hr, min, seconds) {
String ampm;
(hr < 12) {

ampm = ;

} {

ampm =
}

System. printf(" ", hr, min, ampm);

Client

Bridge {

main(String[] args) {
Time[] timeCollection = Time[] {
normalTime(1l, 42, 1, militaryTime()),
normalTime(10, 4, 33, civilianTime(Q)),
timeWithZone(22, 1, 0, 7, civilianTimeWithSeconds()),
timeWithZone(13, 4, 1, 7, militaryTime()),
¥
(Time timeltem : timeCollection) {
timeltem.tell();

Choosing The Implementor Object

* By passing parameters to the abstractions
* Assign a default implementor and change it later

* Delegate the decision to another object such as a
factory class.

Using a bridge gets you..

The ability to select implementation used at
runtime.

Compilation perks.

Encourages programmatic layering, high-level
components only need to know about the
abstraction and implementor

Implementation details can be masked from
clients

