

Version 3.2

8/16/2010

OpenCL
Programming Guide
for the CUDA
Architecture

ii OpenCL Programming Guide Version 3.2

 Table of Contents

Chapter 1. Introduction ... 5

1.1 From Graphics Processing to General-Purpose Parallel Computing 5

1.2 CUDA™: a General-Purpose Parallel Computing Architecture 7

1.3 A Scalable Programming Model .. 8

1.4 Document’s Structure ... 9

Chapter 2. OpenCL on the CUDA Architecture ... 11

2.1 CUDA Architecture .. 11

2.1.1 SIMT Architecture .. 13

2.1.2 Hardware Multithreading .. 14

2.2 Compilation .. 15

2.2.1 PTX .. 15

2.2.2 Volatile .. 15

2.3 Compute Capability ... 16

2.4 Mode Switches ... 16

2.5 Matrix Multiplication Example ... 16

Chapter 3. Performance Guidelines ... 25

3.1 Overall Performance Optimization Strategies ... 25

3.2 Maximize Utilization .. 25

3.2.1 Application Level .. 25

3.2.2 Device Level .. 26

3.2.3 Multiprocessor Level ... 26

3.3 Maximize Memory Throughput ... 28

3.3.1 Data Transfer between Host and Device .. 29

3.3.2 Device Memory Accesses .. 30

3.3.2.1 Global Memory .. 30

3.3.2.2 Local Memory .. 31

3.3.2.3 Shared Memory ... 32

3.3.2.4 Constant Memory .. 32

OpenCL Programming Guide Version 3.2 iii

3.3.2.5 Texture Memory .. 33

3.4 Maximize Instruction Throughput ... 33

3.4.1 Arithmetic Instructions ... 34

3.4.2 Control Flow Instructions .. 36

3.4.3 Synchronization Instruction ... 36

Appendix A. CUDA-Enabled GPUs .. 39

Appendix B. Mathematical Functions Accuracy .. 41

B.1 Standard Functions ... 41

B.1.1 Single-Precision Floating-Point Functions .. 41

B.1.2 Double-Precision Floating-Point Functions .. 43

B.2 Native Functions ... 45

Appendix C. Compute Capabilities ... 47

C.1 Features and Technical Specifications ... 47

C.2 Floating-Point Standard ... 48

C.3 Compute Capability 1.x ... 50

C.3.1 Architecture ... 50

C.3.2 Global Memory .. 51

C.3.2.1 Devices of Compute Capability 1.0 and 1.1 51

C.3.2.2 Devices of Compute Capability 1.2 and 1.3 51

C.3.3 Shared Memory ... 52

C.3.3.1 32-Bit Strided Access ... 52

C.3.3.2 32-Bit Broadcast Access ... 52

C.3.3.3 8-Bit and 16-Bit Access .. 53

C.3.3.4 Larger Than 32-Bit Access .. 53

C.4 Compute Capability 2.0 ... 54

C.4.1 Architecture ... 54

C.4.2 Global Memory .. 55

C.4.3 Shared Memory ... 57

C.4.3.1 32-Bit Strided Access ... 57

C.4.3.2 Larger Than 32-Bit Access .. 57

C.4.4 Constant Memory ... 58

iv OpenCL Programming Guide Version 3.2

List of Figures

Figure 1-1. Floating-Point Operations per Second and Memory Bandwidth for the CPU
and GPU 6

Figure 1-2. The GPU Devotes More Transistors to Data Processing 7

Figure 1-3. CUDA is Designed to Support Various Languages and Application
Programming Interfaces .. 8

Figure 1-4. Automatic Scalability .. 9

Figure 2-1. Grid of Thread Blocks ... 12

Figure 2-2. Matrix Multipliation without Shared Memory ... 19

Figure 2-3. Matrix Multipliation with Shared Memory .. 24

Chapter 1.
Introduction

1.1 From Graphics Processing to
General-Purpose Parallel Computing

Driven by the insatiable market demand for realtime, high-definition 3D graphics,
the programmable Graphic Processor Unit or GPU has evolved into a highly
parallel, multithreaded, manycore processor with tremendous computational
horsepower and very high memory bandwidth, as illustrated by Figure 1-1.

Chapter 1. Introduction

6 OpenCL Programming Guide Version 3.2

Figure 1-1. Floating-Point Operations per Second and Memory
Bandwidth for the CPU and GPU

 Chapter 1. Introduction

OpenCL Programming Guide Version 3.2 7

The reason behind the discrepancy in floating-point capability between the CPU and
the GPU is that the GPU is specialized for compute-intensive, highly parallel
computation – exactly what graphics rendering is about – and therefore designed
such that more transistors are devoted to data processing rather than data caching
and flow control, as schematically illustrated by Figure 1-2.

Figure 1-2. The GPU Devotes More Transistors to Data
Processing

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations – the same program is executed on many
data elements in parallel – with high arithmetic intensity – the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control; and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA™: a General-Purpose Parallel
Computing Architecture

In November 2006, NVIDIA introduced CUDA™, a general purpose parallel
computing architecture – with a new parallel programming model and instruction
set architecture – that leverages the parallel compute engine in NVIDIA GPUs to

Cache

ALU Control

ALU

ALU

ALU

DRAM

CPU

DRAM

GPU

Chapter 1. Introduction

8 OpenCL Programming Guide Version 3.2

solve many complex computational problems in a more efficient way than on a
CPU.

As illustrated by Figure 1-3, there are several languages and application
programming interfaces that can be used to program the CUDA architecture.

Figure 1-3. CUDA is Designed to Support Various Languages
and Application Programming Interfaces

1.3 A Scalable Programming Model

The advent of multicore CPUs and manycore GPUs means that mainstream
processor chips are now parallel systems. Furthermore, their parallelism continues
to scale with Moore’s law. The challenge is to develop application software that
transparently scales its parallelism to leverage the increasing number of processor
cores, much as 3D graphics applications transparently scale their parallelism to
manycore GPUs with widely varying numbers of cores.

The CUDA parallel programming model is designed to overcome this challenge
with three key abstractions: a hierarchy of thread groups, a hierarchy of shared
memories, and barrier synchronization.

These abstractions provide fine-grained data parallelism and thread parallelism,
nested within coarse-grained data parallelism and task parallelism. They guide the
programmer to partition the problem into coarse sub-problems that can be solved
independently in parallel by blocks of threads, and each sub-problem into finer
pieces that can be solved cooperatively in parallel by all threads within the block.
This decomposition preserves language expressivity by allowing threads to
cooperate when solving each sub-problem, and at the same time enables automatic
scalability. Indeed, each block of threads can be scheduled on any of the available
processor cores, in any order, concurrently or sequentially, so that a compiled
OpenCL program can execute on any number of processor cores as illustrated by
Figure 1-4, and only the runtime system needs to know the physical processor
count.

 Chapter 1. Introduction

OpenCL Programming Guide Version 3.2 9

This scalable programming model allows the CUDA architecture to span a wide
market range by simply scaling the number of processors and memory partitions:
from the high-performance enthusiast GeForce GTX 280 GPU and professional
Quadro and Tesla computing products to a variety of inexpensive, mainstream
GeForce GPUs (see Appendix A for a list of all CUDA-enabled GPUs).

A multithreaded program is partitioned into blocks of threads that execute independently from each
other, so that a GPU with more cores will automatically execute the program in less time than a GPU
with fewer cores.

Figure 1-4. Automatic Scalability

1.4 Document’s Structure

This document is organized into the following chapters:

 Chapter 1 is a general introduction to GPU computing and the CUDA
architecture.

 Chapter 2 describes how the OpenCL architecture maps to the CUDA
architecture and the specifics of NVIDIA’s OpenCL implementation.

 Chapter 3 gives some guidance on how to achieve maximum performance.

 Appendix A lists the CUDA-enabled GPUs with their technical specifications.

GPU with 2 Cores

Core 1 Core 0

GPU with 4 Cores

Core 1 Core 0 Core 3 Core 2

Block 5 Block 6

OpenCL Program

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

 Block 1 Block 0

 Block 3 Block 2

 Block 5 Block 4

 Block 7 Block 6

 Block 0 Block 1 Block 2 Block 3

 Block 4 Block 5 Block 6 Block 7

Chapter 1. Introduction

10 OpenCL Programming Guide Version 3.2

 Appendix B lists the accuracy of each mathematical function on the CUDA
architecture.

 Appendix C gives the technical specifications of various devices, as well as more
architectural details.

Chapter 2.
OpenCL on the CUDA Architecture

2.1 CUDA Architecture

The CUDA architecture is a close match to the OpenCL architecture.

A CUDA device is built around a scalable array of multithreaded Streaming
Multiprocessors (SMs). A multiprocessor corresponds to an OpenCL compute unit.

A multiprocessor executes a CUDA thread for each OpenCL work-item and a thread
block for each OpenCL work-group. A kernel is executed over an OpenCL
NDRange by a grid of thread blocks. As illustrated in Figure 2-1, each of the thread
blocks that execute a kernel is therefore uniquely identified by its work-group ID,
and each thread by its global ID or by a combination of its local ID and work-group
ID.

Chapter 2. OpenCL on the CUDA Architecture

12 OpenCL Programming Guide Version 3.2

A kernel is executed over an NDRange by a grid of thread blocks.

Figure 2-1. Grid of Thread Blocks

A thread is also given a unique thread ID within its block. The local ID of a thread
and its thread ID relate to each other in a straightforward way: For a one-
dimensional block, they are the same; for a two-dimensional block of size (Dx, Dy),
the thread ID of a thread of index (x, y) is (x + y Dx); for a three-dimensional block
of size (Dx, Dy, Dz), the thread ID of a thread of index (x, y, z) is

(x + y Dx + z Dx Dy).

When an OpenCL program on the host invokes a kernel, the work-groups are
enumerated and distributed as thread blocks to the multiprocessors with available
execution capacity. The threads of a thread block execute concurrently on one
multiprocessor. As thread blocks terminate, new blocks are launched on the vacated
multiprocessors.

A multiprocessor is designed to execute hundreds of threads concurrently. To
manage such a large amount of threads, it employs a unique architecture called
SIMT (Single-Instruction, Multiple-Thread) that is described in Section 2.1.1. To

Grid

Block (1, 1)

Thread (0, 0) Thread (1, 0) Thread (2, 0) Thread (3, 0)

Thread (0, 1) Thread (1, 1) Thread (2, 1) Thread (3, 1)

Thread (0, 2) Thread (1, 2) Thread (2, 2) Thread (3, 2)

Block (2, 1) Block (1, 1) Block (0, 1)

Block (2, 0) Block (1, 0) Block (0, 0)

 Chapter 1

OpenCL Programming Guide Version 3.2 13

maximize utilization of its functional units, it leverages thread-level parallelism by
using hardware multithreading as detailed in Section 2.1.2, more so than instruction-
level parallelism within a single thread (instructions are pipelined, but unlike CPU
cores they are executed in order and there is no branch prediction and no
speculative execution).

Sections 2.1.1 and 2.1.2 describe the architecture features of the streaming
multiprocessor that are common to all devices. Sections C.3.1 and C.4.1 provide the
specifics for devices of compute capabilities 1.x and 2.0, respectively (see Section 2.3
for the definition of compute capability).

2.1.1 SIMT Architecture

The multiprocessor creates, manages, schedules, and executes threads in groups of
32 parallel threads called warps. Individual threads composing a warp start together
at the same program address, but they have their own instruction address counter
and register state and are therefore free to branch and execute independently. The
term warp originates from weaving, the first parallel thread technology. A half-warp is
either the first or second half of a warp. A quarter-warp is either the first, second,
third, or fourth quarter of a warp.

When a multiprocessor is given one or more thread blocks to execute, it partitions
them into warps that get scheduled by a warp scheduler for execution. The way a block
is partitioned into warps is always the same; each warp contains threads of
consecutive, increasing thread IDs with the first warp containing thread 0.
Section 2.1 describes how thread IDs relate to thread indices in the block.

A warp executes one common instruction at a time, so full efficiency is realized
when all 32 threads of a warp agree on their execution path. If threads of a warp
diverge via a data-dependent conditional branch, the warp serially executes each
branch path taken, disabling threads that are not on that path, and when all paths
complete, the threads converge back to the same execution path. Branch divergence
occurs only within a warp; different warps execute independently regardless of
whether they are executing common or disjoint code paths.

The SIMT architecture is akin to SIMD (Single Instruction, Multiple Data) vector
organizations in that a single instruction controls multiple processing elements. A
key difference is that SIMD vector organizations expose the SIMD width to the
software, whereas SIMT instructions specify the execution and branching behavior
of a single thread. In contrast with SIMD vector machines, SIMT enables
programmers to write thread-level parallel code for independent, scalar threads, as
well as data-parallel code for coordinated threads. For the purposes of correctness,
the programmer can essentially ignore the SIMT behavior; however, substantial
performance improvements can be realized by taking care that the code seldom
requires threads in a warp to diverge. In practice, this is analogous to the role of
cache lines in traditional code: Cache line size can be safely ignored when designing
for correctness but must be considered in the code structure when designing for
peak performance. Vector architectures, on the other hand, require the software to
coalesce loads into vectors and manage divergence manually.

If a non-atomic instruction executed by a warp writes to the same location in global
or shared memory for more than one of the threads of the warp, the number of
serialized writes that occur to that location varies depending on the compute

Chapter 2. OpenCL on the CUDA Architecture

14 OpenCL Programming Guide Version 3.2

capability of the device (see Sections C.3.2, C.3.3, C.4.2, and C.4.3) and which thread
performs the final write is undefined.

If an atomic instruction executed by a warp reads, modifies, and writes to the same
location in global memory for more than one of the threads of the warp, each read,
modify, write to that location occurs and they are all serialized, but the order in
which they occur is undefined.

2.1.2 Hardware Multithreading

The execution context (program counters, registers, etc) for each warp processed by
a multiprocessor is maintained on-chip during the entire lifetime of the warp.
Switching from one execution context to another therefore has no cost, and at every
instruction issue time, the warp scheduler selects a warp that has threads ready to
execute (active threads) and issues the next instruction to those threads.

In particular, each multiprocessor has a set of 32-bit registers that are partitioned
among the warps, and a parallel data cache or shared memory that is partitioned among
the thread blocks and used to implement OpenCL local memory.

The number of blocks and warps that can reside and be processed together on the
multiprocessor for a given kernel depends on the amount of registers and shared
memory used by the kernel and the amount of registers and shared memory
available on the multiprocessor. There are also a maximum number of resident
blocks and a maximum number of resident warps per multiprocessor. These limits
as well the amount of registers and shared memory available on the multiprocessor
are a function of the compute capability of the device and are given in Appendix C.
If there are not enough registers or shared memory available per multiprocessor to
process at least one block, the kernel will fail to launch.

The total number of warps Wblock in a block is as follows:

)1,(
size

block
W

T
ceilW

 T is the number of threads per block,

 Wsize is the warp size, which is equal to 32,

 ceil(x, y) is equal to x rounded up to the nearest multiple of y.

The total number of registers Rblock allocated for a block is as follows:

For devices of compute capability 1.x:

),),((TksizeWblockblock GRWGWceilceilR

For devices of compute capability 2.0:

blockTsizekblock WGWRceilR),(

 GW is the warp allocation granularity, equal to 2 (compute capability 1.x only),

 Rk is the number of registers used by the kernel,

 GT is the thread allocation granularity, equal to 256 for devices of compute
capability 1.0 and 1.1, and 512 for devices of compute capability 1.2 and 1.3,
and 64 for devices of compute capability 2.0.

 Chapter 1

OpenCL Programming Guide Version 3.2 15

The total amount of shared memory Sblock in bytes allocated for a block is as follows:

),(Skblock GSceilS

 Sk is the amount of shared memory used by the kernel in bytes,

GS is the shared memory allocation granularity, which is equal to 512 for devices of
compute capability 1.x and 128 for devices of compute capability 2.0.

2.2 Compilation

2.2.1 PTX

Kernels written in OpenCL C are compiled into PTX, which is CUDA’s instruction
set architecture and is described in a separate document.

Currently, the PTX intermediate representation can be obtained by calling
clGetProgramInfo() with CL_PROGRAM_BINARIES. It can be passed to
clCreateProgramWithBinary() to create a program object only if it is
produced and consumed by the same driver. This will likely not be supported in
future versions.

2.2.2 Volatile

Only after the execution of barrier(), mem_fence(), read_mem_fence(), or
write_mem_fence() are prior writes to global or shared memory of a given
thread guaranteed to be visible by other threads. As long as this requirement is met,
the compiler is free to optimize reads and writes to global or shared memory. For
example, in the code sample below, the first reference to myArray[tid] compiles
into a global or shared memory read instruction, but the second reference does not
as the compiler simply reuses the result of the first read.

// myArray is an array of non-zero integers

// located in global or shared memory

__kernel void myKernel(__global int* result) {

 int tid = get_local_id(0);

 int ref1 = myArray[tid] * 1;

 myArray[tid + 1] = 2;

 int ref2 = myArray[tid] * 1;

 result[tid] = ref1 * ref2;

}

Therefore, ref2 cannot possibly be equal to 2 in thread tid as a result of thread
tid-1 overwriting myArray[tid] by 2.

This behavior can be changed using the volatile keyword: If a variable located in
global or shared memory is declared as volatile, the compiler assumes that its value
can be changed at any time by another thread and therefore any reference to this
variable compiles to an actual memory read instruction.

Note that even if myArray is declared as volatile in the code sample above, there is
no guarantee, in general, that ref2 will be equal to 2 in thread tid since thread

Chapter 2. OpenCL on the CUDA Architecture

16 OpenCL Programming Guide Version 3.2

tid might read myArray[tid] into ref2 before thread tid-1 overwrites its
value by 2. Synchronization is required.

2.3 Compute Capability

The compute capability of a device is defined by a major revision number and a minor
revision number.

Devices with the same major revision number are of the same core architecture. The
major revision number of devices based on the Fermi architecture is 2. Prior devices
are all of compute capability 1.x (Their major revision number is 1).

The minor revision number corresponds to an incremental improvement to the core
architecture, possibly including new features.

Appendix A lists of all CUDA-enabled devices along with their compute capability.
Appendix C gives the technical specifications of each compute capability.

The compute capability of a device can be programmatically queried using the
cl_nv_device_attribute_query extension.

2.4 Mode Switches

GPUs dedicate some DRAM memory to the so-called primary surface, which is used
to refresh the display device whose output is viewed by the user. When users initiate
a mode switch of the display by changing the resolution or bit depth of the display
(using NVIDIA control panel or the Display control panel on Windows), the
amount of memory needed for the primary surface changes. For example, if the user
changes the display resolution from 1280x1024x32-bit to 1600x1200x32-bit, the
system must dedicate 7.68 MB to the primary surface rather than 5.24 MB. (Full-
screen graphics applications running with anti-aliasing enabled may require much
more display memory for the primary surface.) On Windows, other events that may
initiate display mode switches include launching a full-screen DirectX application,
hitting Alt+Tab to task switch away from a full-screen DirectX application, or
hitting Ctrl+Alt+Del to lock the computer.

If a mode switch increases the amount of memory needed for the primary surface,
the system may have to cannibalize memory allocations dedicated to OpenCL
applications. Therefore, a mode switch results in any call to the OpenCL runtime to
fail and return an invalid context error.

2.5 Matrix Multiplication Example

The following matrix multiplication example illustrates the typical data-parallel
approach used by OpenCL applications to achieve good performance on GPUs. It
also illustrates the use of OpenCL local memory that maps to shared memory on
the CUDA architecture. Shared memory is much faster than global memory as
detailed in Section 3.3.2.3, so any opportunity to replace global memory accesses by
shared memory accesses should be exploited.

 Chapter 1

OpenCL Programming Guide Version 3.2 17

The following code sample is a straightforward implementation of matrix
multiplication that does not take advantage of shared memory. Each thread reads
one row of A and one column of B and computes the corresponding element of C
as illustrated in Figure 2-2. A is therefore read B.width times from global memory
and B is read A.height times.

// Host code

// Matrices are stored in row-major order:

// M(row, col) = *(M.elements + row * M.width + col)

typedef struct {

 int width;

 int height;

 cl_mem elements;

} Matrix;

// Thread block size

#define BLOCK_SIZE 16

// Matrix multiplication - Host code

// Matrix dimensions are assumed to be multiples of BLOCK_SIZE

void MatMulHost(const Matrix A, const Matrix B, Matrix C,

 const cl_context context,

 const cl_kernel matMulKernel,

 const cl_command_queue queue)

{

 // Load A and B to device memory

 Matrix d_A;

 d_A.width = A.width; d_A.height = A.height;

 size_t size = A.width * A.height * sizeof(float);

 d_A.elements = clCreateBuffer(context,

 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,

 size, A.elements, 0);

 Matrix d_B;

 d_B.width = B.width; d_B.height = B.height;

 size = B.width * B.height * sizeof(float);

 d_B.elements = clCreateBuffer(context,

 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,

 size, B.elements, 0);

 // Allocate C in device memory

 Matrix d_C;

 d_C.width = C.width; d_C.height = C.height;

 size = C.width * C.height * sizeof(float);

 d_C.elements = clCreateBuffer(context,

 CL_MEM_WRITE_ONLY, size, 0, 0);

 // Invoke kernel

 cl_uint i = 0;

 clSetKernelArg(matMulKernel, i++,

 sizeof(d_A.width), (void*)&d_A.width);

 clSetKernelArg(matMulKernel, i++,

 sizeof(d_A.height), (void*)&d_A.height);

 clSetKernelArg(matMulKernel, i++,

 sizeof(d_A.elements), (void*)&d_A.elements);

Chapter 2. OpenCL on the CUDA Architecture

18 OpenCL Programming Guide Version 3.2

 clSetKernelArg(matMulKernel, i++,

 sizeof(d_B.width), (void*)&d_B.width);

 clSetKernelArg(matMulKernel, i++,

 sizeof(d_B.height), (void*)&d_B.height);

 clSetKernelArg(matMulKernel, i++,

 sizeof(d_B.elements), (void*)&d_B.elements);

 clSetKernelArg(matMulKernel, i++,

 sizeof(d_C.width), (void*)&d_C.width);

 clSetKernelArg(matMulKernel, i++,

 sizeof(d_C.height), (void*)&d_C.height);

 clSetKernelArg(matMulKernel, i++,

 sizeof(d_C.elements), (void*)&d_C.elements);

 size_t localWorkSize[] = { BLOCK_SIZE, BLOCK_SIZE };

 size_t globalWorkSize[] =

 { B.width / dimBlock.x, A.height / dimBlock.y };

 clEnqueueNDRangeKernel(queue, matMulKernel, 2, 0,

 globalWorkSize, localWorkSize,

 0, 0, 0);

 // Read C from device memory

 clEnqueueReadBuffer(queue, d_C.elements, CL_TRUE, 0, size,

 C.elements, 0, 0, 0);

 // Free device memory

 clReleaseMemObject(d_A.elements);

 clReleaseMemObject(d_C.elements);

 clReleaseMemObject(d_B.elements);

}

// Kernel code

// Matrices are stored in row-major order:

// M(row, col) = *(M.elements + row * M.width + col)

typedef struct {

 int width;

 int height;

 __global float* elements;

} Matrix;

// Thread block size

#define BLOCK_SIZE 16

// Matrix multiplication function called by MatMulKernel()

void MatMul(Matrix A, Matrix B, Matrix C)

{

 float Cvalue = 0;

 int row = get_global_id(1);

 int col = get_global_id(0);

 for (int e = 0; e < A.width; ++e)

 Cvalue += A.elements[row * A.width + e]

 * B.elements[e * B.width + col];

 C.elements[row * C.width + col] = Cvalue;

}

// Matrix multiplication kernel called by MatMulHost()

__kernel void MatMulKernel(

 Chapter 1

OpenCL Programming Guide Version 3.2 19

 int Awidth, int Aheight, __global float* Aelements,

 int Bwidth, int Bheight, __global float* Belements,

 int Cwidth, int Cheight, __global float* Celements)

{

 Matrix A = { Awidth, Aheight, Aelements };

 Matrix B = { Bwidth, Bheight, Belements };

 Matrix C = { Cwidth, Cheight, Celements };

 matrixMul(A, B, C);

}

Figure 2-2. Matrix Multipliation without Shared Memory

The following code sample is an implementation of matrix multiplication that does
take advantage of shared memory. In this implementation, each thread block is
responsible for computing one square sub-matrix Csub of C and each thread within
the block is responsible for computing one element of Csub. As illustrated in Figure
2-3, Csub is equal to the product of two rectangular matrices: the sub-matrix of A of
dimension (A.width, block_size) that has the same line indices as Csub, and the sub-
matrix of B of dimension (block_size, A.width) that has the same column indices as

A

B

C

B.width A.width

0 col

A
.h

e
ig

h
t

B
.h

e
ig

h
t

B
.w

id
th

-1

row

0

A.height-1

Chapter 2. OpenCL on the CUDA Architecture

20 OpenCL Programming Guide Version 3.2

Csub. In order to fit into the device’s resources, these two rectangular matrices are
divided into as many square matrices of dimension block_size as necessary and Csub is
computed as the sum of the products of these square matrices. Each of these
products is performed by first loading the two corresponding square matrices from
global memory to shared memory with one thread loading one element of each
matrix, and then by having each thread compute one element of the product. Each
thread accumulates the result of each of these products into a register and once
done writes the result to global memory.

By blocking the computation this way, we take advantage of fast shared memory
and save a lot of global memory bandwidth since A is only read (B.width / block_size)
times from global memory and B is read (A.height / block_size) times.

The Matrix type from the previous code sample is augmented with a stride field, so
that sub-matrices can be efficiently represented with the same type.

// Host code

// Matrices are stored in row-major order:

// M(row, col) = *(M.elements + row * M.stride + col)

typedef struct {

 int width;

 int height;

 int stride;

 cl_mem elements;

} Matrix;

// Thread block size

#define BLOCK_SIZE 16

// Matrix multiplication - Host code

// Matrix dimensions are assumed to be multiples of BLOCK_SIZE

void MatMulHost(const Matrix A, const Matrix B, Matrix C,

 const cl_context context,

 const cl_kernel matMulKernel,

 const cl_command_queue queue)

{

 // Load A and B to device memory

 Matrix d_A;

 d_A.width = d_A.stride = A.width; d_A.height = A.height;

 size_t size = A.width * A.height * sizeof(float);

 d_A.elements = clCreateBuffer(context,

 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,

 size, A.elements, 0);

 Matrix d_B;

 d_B.width = d_B.stride = B.width; d_B.height = B.height;

 size = B.width * B.height * sizeof(float);

 d_B.elements = clCreateBuffer(context,

 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,

 size, B.elements, 0);

 // Allocate C in device memory

 Matrix d_C;

 d_C.width = d_C.stride = C.width; d_C.height = C.height;

 size = C.width * C.height * sizeof(float);

 Chapter 1

OpenCL Programming Guide Version 3.2 21

 d_C.elements = clCreateBuffer(context,

 CL_MEM_WRITE_ONLY, size, 0, 0);

 // Invoke kernel

 cl_uint i = 0;

 clSetKernelArg(matMulKernel, i++,

 sizeof(d_A.width), (void*)&d_A.width);

 clSetKernelArg(matMulKernel, i++,

 sizeof(d_A.height), (void*)&d_A.height);

 clSetKernelArg(matMulKernel, i++,

 sizeof(d_A.stride), (void*)&d_A.stride);

 clSetKernelArg(matMulKernel, i++,

 sizeof(d_A.elements), (void*)&d_A.elements);

 clSetKernelArg(matMulKernel, i++,

 sizeof(d_B.width), (void*)&d_B.width);

 clSetKernelArg(matMulKernel, i++,

 sizeof(d_B.height), (void*)&d_B.height);

 clSetKernelArg(matMulKernel, i++,

 sizeof(d_B. stride), (void*)&d_B.stride);

 clSetKernelArg(matMulKernel, i++,

 sizeof(d_B.elements), (void*)&d_B.elements);

 clSetKernelArg(matMulKernel, i++,

 sizeof(d_C.width), (void*)&d_C.width);

 clSetKernelArg(matMulKernel, i++,

 sizeof(d_C.height), (void*)&d_C.height);

 clSetKernelArg(matMulKernel, i++,

 sizeof(d_C.stride), (void*)&d_C.stride);

 clSetKernelArg(matMulKernel, i++,

 sizeof(d_C.elements), (void*)&d_C.elements);

 size_t localWorkSize[] = { BLOCK_SIZE, BLOCK_SIZE };

 size_t globalWorkSize[] =

 { B.width / dimBlock.x, A.height / dimBlock.y };

 clEnqueueNDRangeKernel(queue, matMulKernel, 2, 0,

 globalWorkSize, localWorkSize,

 0, 0, 0);

 // Read C from device memory

 clEnqueueReadBuffer(queue, d_C.elements, CL_TRUE, 0, size,

 C.elements, 0, 0, 0);

 // Free device memory

 clReleaseMemObject(d_A.elements);

 clReleaseMemObject(d_C.elements);

 clReleaseMemObject(d_B.elements);

}

// Kernel code

// Matrices are stored in row-major order:

// M(row, col) = *(M.elements + row * M.stride + col)

typedef struct {

 int width;

 int height;

 int stride;

 __global float* elements;

} Matrix;

Chapter 2. OpenCL on the CUDA Architecture

22 OpenCL Programming Guide Version 3.2

// Thread block size

#define BLOCK_SIZE 16

// Get a matrix element

float GetElement(const Matrix A, int row, int col)

{

 return A.elements[row * A.stride + col];

}

// Set a matrix element

void SetElement(Matrix A, int row, int col, float value)

{

 A.elements[row * A.stride + col] = value;

}

// Get the BLOCK_SIZExBLOCK_SIZE sub-matrix Asub of A that is

// located col sub-matrices to the right and row sub-matrices down

// from the upper-left corner of A

Matrix GetSubMatrix(Matrix A, int row, int col)

{

 Matrix Asub;

 Asub.width = BLOCK_SIZE;

 Asub.height = BLOCK_SIZE;

 Asub.stride = A.stride;

 Asub.elements =

 &A.elements[A.stride * BLOCK_SIZE * row + BLOCK_SIZE * col];

 return Asub;

}

// Matrix multiplication function called by MatMulKernel()

void MatMul(Matrix C, Matrix A, Matrix B,

 __local float As[BLOCK_SIZE][BLOCK_SIZE],

 __local float Bs[BLOCK_SIZE][BLOCK_SIZE])

{

 // Block row and column

 int blockRow = get_group_id(1);

 int blockCol = get_group_id(0);

 // Each thread block computes one sub-matrix Csub of C

 Matrix Csub = GetSubMatrix(C, blockRow, blockCol);

 // Each thread computes one element of Csub

 // by accumulating results into Cvalue

 float Cvalue = 0;

 // Thread row and column within Csub

 int row = get_local_id(1);

 int col = get_local_id(0);

 // Loop over all the sub-matrices of A and B that are

 // required to compute Csub

 // Multiply each pair of sub-matrices together

 // and accumulate the results

 for (int m = 0; m < (A.width / BLOCK_SIZE); ++m) {

 // Get sub-matrix Asub of A

 Chapter 1

OpenCL Programming Guide Version 3.2 23

 Matrix Asub = GetSubMatrix(A, blockRow, m);

 // Get sub-matrix Bsub of B

 Matrix Bsub = GetSubMatrix(B, m, blockCol);

 // Load Asub and Bsub from device memory to shared memory

 // Each thread loads one element of each sub-matrix

 As[row][col] = GetElement(Asub, row, col);

 Bs[row][col] = GetElement(Bsub, row, col);

 // Synchronize to make sure the sub-matrices are loaded

 // before starting the computation

 barrier(CLK_LOCAL_MEM_FENCE);

 // Multiply Asub and Bsub together

 for (int e = 0; e < BLOCK_SIZE; ++e)

 Cvalue += As[row][e] * Bs[e][col];

 // Synchronize to make sure that the preceding

 // computation is done before loading two new

 // sub-matrices of A and B in the next iteration

 barrier(CLK_LOCAL_MEM_FENCE);

 }

 // Write Csub to device memory

 // Each thread writes one element

 SetElement(Csub, row, col, Cvalue);

}

// Matrix multiplication kernel called by MatMulHost()

__kernel void matrixMulKernel(

 int Cwidth, int Cheight, int Cstride, __global float* Celements,

 int Awidth, int Aheight, int Astride, __global float* Aelements,

 int Bwidth, int Bheight, int Bstride, __global float* Belements,

 __local float As[BLOCK_SIZE][BLOCK_SIZE],

 __local float Bs[BLOCK_SIZE][BLOCK_SIZE])

{

 Matrix C = { Cwidth, Cheight, Cstride, Celements };

 Matrix A = { Awidth, Aheight, Astride, Aelements };

 Matrix B = { Bwidth, Bheight, Bstride, Belements };

 MatMul(A, B, C, As, Bs);

}

Chapter 2. OpenCL on the CUDA Architecture

24 OpenCL Programming Guide Version 3.2

Figure 2-3. Matrix Multipliation with Shared Memory

A

B

C

Csub

BLOCK_SIZE

B.width A.width

BLOCK_SIZE BLOCK_SIZE

B
L
O

C
K

_
S

IZ
E

B

L
O

C
K

_
S

IZ
E

B

L
O

C
K

_
S

IZ
E

b
lo

c
k

R
o

w

row

0

BLOCK_SIZE-1

B
L
O

C
K

_
S

IZ
E

-1

0 col

blockCol

A
.h

e
ig

h
t

B
.h

e
ig

h
t

Chapter 3.
Performance Guidelines

3.1 Overall Performance Optimization Strategies

Performance optimization revolves around three basic strategies:

 Maximize parallel execution to achieve maximum utilization;

 Optimize memory usage to achieve maximum memory throughput;

 Optimize instruction usage to achieve maximum instruction throughput.

Which strategies will yield the best performance gain for a particular portion of an
application depends on the performance limiters for that portion; optimizing
instruction usage of a kernel that is mostly limited by memory accesses will not yield
any significant performance gain, for example. Optimization efforts should
therefore be constantly directed by measuring and monitoring the performance
limiters, for example using the OpenCL profiler. Also, comparing the floating-point
operation throughput or memory throughput – whichever makes more sense – of a
particular kernel to the corresponding peak theoretical throughput of the device
indicates how much room for improvement there is for the kernel.

3.2 Maximize Utilization

To maximize utilization the application should be structured in a way that it exposes
as much parallelism as possible and efficiently maps this parallelism to the various
components of the system to keep them busy most of the time.

3.2.1 Application Level

At a high level, the application should maximize parallel execution between the host,
the devices, and the bus connecting the host to the devices, by using queues. It
should assign to each processor the type of work it does best: serial workloads to
the host; parallel workloads to the devices.

For the parallel workloads, at points in the algorithm where parallelism is broken
because some threads need to synchronize in order to share data with each other,
there are two cases: Either these threads belong to the same block, in which case
they should use barrier() and share data through shared memory within the

Chapter 3. Performance Guidelines

26 OpenCL Programming Guide Version 3.2

same kernel invocation, or they belong to different blocks, in which case they must
share data through global memory using two separate kernel invocations, one for
writing to and one for reading from global memory. The second case is much less
optimal since it adds the overhead of extra kernel invocations and global memory
traffic. Its occurrence should therefore be minimized by mapping the algorithm to
the OpenCL programming model in such a way that the computations that require
inter-thread communication are performed within a single thread block as much as
possible.

3.2.2 Device Level

At a lower level, the application should maximize parallel execution between the
multiprocessors of a device.

For devices of compute capability 1.x, only one kernel can execute on a device at
one time, so the kernel should be launched with at least as many thread blocks as
there are multiprocessors in the device.

For devices of compute capability 2.0, multiple kernels can execute concurrently on
a device, so maximum utilization can also be achieved by using queues to enable
enough kernels to execute concurrently.

3.2.3 Multiprocessor Level

At an even lower level, the application should maximize parallel execution between
the various functional units within a multiprocessor.

As described in Section 2.1.2, a GPU multiprocessor relies on thread-level
parallelism to maximize utilization of its functional units. Utilization is therefore
directly linked to the number of resident warps. At every instruction issue time, a
warp scheduler selects a warp that is ready to execute, if any, and issues the next
instruction to the active threads of the warp. The number of clock cycles it takes for
a warp to be ready to execute its next instruction is called latency, and full utilization
is achieved when the warp scheduler always has some instruction to issue for some
warp at every clock cycle during that latency period, or in other words, when the
latency of each warp is completely “hidden” by other warps. How many instructions
are required to hide latency depends on the instruction throughput. For example, to
hide a latency of L clock cycles with basic single-precision floating-point arithmetic
instructions (scheduled on CUDA cores):

 L/4 (rounded up to nearest integer) instructions are required for devices of
compute capability 1.x since a multiprocessor issues one such instruction per
warp over 4 clock cycles, as mentioned in Section C.3.1,

 L/2 (rounded up to nearest integer) instructions are required for devices of
compute capability 2.0 since a multiprocessor issues the two instructions for a
pair of warps over 2 clock cycles, as mentioned in Section C.4.1.

The most common reason a warp is not ready to execute its next instruction is that
the instruction’s input operands are not yet available.

If all input operands are registers, latency is caused by register dependencies, i.e.,
some of the input operands are written by some previous instruction(s) whose

 Chapter 3. Performance Guidelines

OpenCL Programming Guide Version 3.2 27

execution has not completed yet. In the case of a back-to-back register dependency
(i.e., some input operand is written by the previous instruction), the latency is equal
to the execution time of the previous instruction and the warp scheduler must
schedule instructions for different warps during that time. Execution time varies
depending on the instruction, but it is typically about 22 clock cycles, which
translates to 6 warps for devices of compute capability 1.x and 11 warps for devices
of compute capability 2.0.

If some input operand resides in off-chip memory, the latency is much higher: 400
to 800 clock cycles. The number of warps required to keep the warp scheduler busy
during such high latency periods depends on the kernel code; in general, more warps
are required if the ratio of the number of instructions with no off-chip memory
operands (i.e., arithmetic instructions most of the time) to the number of
instructions with off-chip memory operands is low (this ratio is commonly called
the arithmetic intensity of the program). If this ratio is 10, for example, then to hide
latencies of about 600 clock cycles, about 15 warps are required for devices of
compute capability 1.x and about 30 for devices of compute capability 2.0.

Another reason a warp is not ready to execute its next instruction is that it is waiting
at some memory fence or synchronization point. A synchronization point can force
the multiprocessor to idle as more and more warps wait for other warps in the same
block to complete execution of instructions prior to the synchronization point.
Having multiple resident blocks per multiprocessor can help reduce idling in this
case, as warps from different blocks do not need to wait for each other at
synchronization points.

The number of blocks and warps residing on each multiprocessor for a given kernel
call depends on the NDRange of the call, the memory resources of the
multiprocessor, and the resource requirements of the kernel as described in Section
2.1.2. To assist programmers in choosing thread block size based on register and
shared memory requirements, the CUDA Software Development Kit provides a
spreadsheet, called the CUDA Occupancy Calculator, where occupancy is defined as
the ratio of the number of resident warps to the maximum number of resident
warps (given in Appendix C for various compute capabilities).

Register, local, shared, and constant memory usages are reported by the compiler
when compiling with the -cl-nv-verbose build option (see
cl_nv_compiler_options extension).

The total amount of shared memory required for a block is equal to the sum of the
amount of statically allocated shared memory, the amount of dynamically allocated
shared memory, and for devices of compute capability 1.x, the amount of shared
memory used to pass the kernel’s arguments.

The number of registers used by a kernel can have a significant impact on the
number of resident warps. For example, for devices of compute capability 1.2, if a
kernel uses 16 registers and each block has 512 threads and requires very little
shared memory, then two blocks (i.e., 32 warps) can reside on the multiprocessor
since they require 2x512x16 registers, which exactly matches the number of registers
available on the multiprocessor. But as soon as the kernel uses one more register,
only one block (i.e., 16 warps) can be resident since two blocks would require
2x512x17 registers, which is more registers than are available on the multiprocessor.
Therefore, the compiler attempts to minimize register usage while keeping register

Chapter 3. Performance Guidelines

28 OpenCL Programming Guide Version 3.2

spilling (see Section 3.3.2.2) and the number of instructions to a minimum. Register
usage can be controlled using the -cl-nv-maxrregcount build option.

Each double variable (on devices that supports native double precision, i.e. devices
of compute capability 1.2 and higher) and each long long variable uses two
registers. However, devices of compute capability 1.2 and higher have at least twice
as many registers per multiprocessor as devices with lower compute capability.

The effect of NDRange on performance for a given kernel call generally depends on
the kernel code. Experimentation is therefore recommended and applications
should set the work-group size explicitly as opposed to rely on the OpenCL
implementation to determine the right size (by setting local_work_size to NULL in
clEnqueueNDRangeKernel()). Applications can also parameterize NDRanges
based on register file size and shared memory size, which depends on the compute
capability of the device, as well as on the number of multiprocessors and memory
bandwidth of the device, all of which can be queried using the runtime or driver
API (see reference manual).

The number of threads per block should be chosen as a multiple of the warp size to
avoid wasting computing resources with under-populated warps as much as
possible.

3.3 Maximize Memory Throughput

The first step in maximizing overall memory throughput for the application is to
minimize data transfers with low bandwidth.

That means minimizing data transfers between the host and the device, as detailed
in Section 3.3.1, since these have much lower bandwidth than data transfers
between global memory and the device.

That also means minimizing data transfers between global memory and the device
by maximizing use of on-chip memory: shared memory and caches (i.e. L1/L2
caches available on devices of compute capability 2.0, texture cache and constant
cache available on all devices).

Shared memory is equivalent to a user-managed cache: The application explicitly
allocates and accesses it. As illustrated in Section 2.5, a typical programming pattern
is to stage data coming from device memory into shared memory; in other words, to
have each thread of a block:

 Load data from device memory to shared memory,

 Synchronize with all the other threads of the block so that each thread can
safely read shared memory locations that were populated by different threads,

 Process the data in shared memory,

 Synchronize again if necessary to make sure that shared memory has been
updated with the results,

 Write the results back to device memory.

For some applications (e.g. for which global memory accesses are data-dependent), a
traditional hardware-managed cache is more appropriate to exploit data locality. As
mentioned in Section C.4.1, for devices of compute capability 2.0, the same on-chip

 Chapter 3. Performance Guidelines

OpenCL Programming Guide Version 3.2 29

memory is used for both L1 and shared memory, and how much of it is dedicated to
L1 versus shared memory is configurable for each kernel call.

The throughput of memory accesses by a kernel can vary by an order of magnitude
depending on access pattern for each type of memory. The next step in maximizing
memory throughput is therefore to organize memory accesses as optimally as
possible based on the optimal memory access patterns described in Sections 3.3.2.1,
3.3.2.3, 3.3.2.4, and 3.3.2.5. This optimization is especially important for global
memory accesses as global memory bandwidth is low, so non-optimal global
memory accesses have a higher impact on performance.

3.3.1 Data Transfer between Host and Device

Applications should strive to minimize data transfer between the host and the
device. One way to accomplish this is to move more code from the host to the
device, even if that means running kernels with low parallelism computations.
Intermediate data structures may be created in device memory, operated on by the
device, and destroyed without ever being mapped by the host or copied to host
memory.

Also, because of the overhead associated with each transfer, batching many small
transfers into a single large transfer always performs better than making each
transfer separately.

Finally, higher performance for data transfers between host and device is achieved
for memory objects allocated in page-locked (also known as pinned) host memory (as
opposed to regular pageable host memory allocated by malloc()), which has
several benefits:

 On systems with a front-side bus, higher performance for data transfers
between host and device is achieved if host memory is allocated as page-locked.

 For some devices, copies between page-locked host memory and device
memory can be performed concurrently with kernel execution.

 For some devices, page-locked host memory can be mapped into the device’s
address space. In this case, there is no need to allocate any device memory and
to explicitly copy data between device and host memory. Data transfers are
implicitly performed each time the kernel accesses the mapped memory. For
maximum performance, these memory accesses must be coalesced like if they
were accesses to global memory (see Section 3.3.2.1). Assuming that they are
and that the mapped memory is read or written only once, avoiding explicit
copies between device and host memory can be a win performance-wise. It is
always a win on integrated systems where device memory and host memory are
physically the same and therefore any copy between host and device memory is
superfluous.

OpenCL applications do not have direct control over whether memory objects are
allocated in page-locked memory or not, but they can create objects using the
CL_MEM_ALLOC_HOST_PTR flag and such objects are likely to be allocated in page-
locked memory by the driver for best performance.

Chapter 3. Performance Guidelines

30 OpenCL Programming Guide Version 3.2

3.3.2 Device Memory Accesses

An instruction that accesses addressable memory (i.e., global, local, shared, constant,
or texture memory) might need to be re-issued multiple times depending on the
distribution of the memory addresses across the threads within the warp. How the
distribution affects the instruction throughput this way is specific to each type of
memory and described in the following sections. For example, for global memory,
as a general rule, the more scattered the addresses are, the more reduced the
throughput is.

3.3.2.1 Global Memory
Global memory resides in device memory and device memory is accessed via 32-,
64-, or 128-byte memory transactions. These memory transactions must be naturally
aligned: Only the 32-, 64-, or 128-byte segments of device memory that are aligned
to their size (i.e. whose first address is a multiple of their size) can be read or written
by memory transactions.

When a warp executes an instruction that accesses global memory, it coalesces the
memory accesses of the threads within the warp into one or more of these memory
transactions depending on the size of the word accessed by each thread and the
distribution of the memory addresses across the threads. In general, the more
transactions are necessary, the more unused words are transferred in addition to the
words accessed by the threads, reducing the instruction throughput accordingly. For
example, if a 32-byte memory transaction is generated for each thread’s 4-byte
access, throughput is divided by 8.

How many transactions are necessary and how throughput is ultimately affected
varies with the compute capability of the device. For devices of compute capability
1.0 and 1.1, the requirements on the distribution of the addresses across the threads
to get any coalescing at all are very strict. They are much more relaxed for devices of
higher compute capabilities. For devices of compute capability 2.0, the memory
transactions are cached, so data locality is exploited to reduce impact on throughput.
Sections C.3.2 and C.4.2 give more details on how global memory accesses are
handled for various compute capabilities.

To maximize global memory throughput, it is therefore important to maximize
coalescing by:

 Following the most optimal access patterns based on Sections C.3.2 and C.4.2,

 Using data types that meet the size and alignment requirement detailed in
Section 3.3.2.1.1,

 Padding data in some cases, for example, when accessing a two-dimensional
array as described in Section 3.3.2.1.2.

3.3.2.1.1 Size and Alignment Requirement

Global memory instructions support reading or writing words of size equal to 1, 2,
4, 8, or 16 bytes. Any access (via a variable or a pointer) to data residing in global
memory compiles to a single global memory instruction if and only if the size of the
data type is 1, 2, 4, 8, or 16 bytes and the data is naturally aligned (i.e. its address is a
multiple of that size).

 Chapter 3. Performance Guidelines

OpenCL Programming Guide Version 3.2 31

If this size and alignment requirement is not fulfilled, the access compiles to
multiple instructions with interleaved access patterns that prevent these instructions
from fully coalescing. It is therefore recommended to use types that meet this
requirement for data that resides in global memory.

The alignment requirement is automatically fulfilled for built-in types.

For structures, the size and alignment requirements can be enforced by the compiler
using the alignment specifiers __attribute__ ((aligned(8))) or
__attribute__ ((aligned(16))), such as

struct {

 float a;

 float b;

} __attribute__ ((aligned(8)));

or

struct {

 float a;

 float b;

 float c;

} __attribute__ ((aligned(16)));

Any address of a variable residing in global memory or returned by one of the
memory allocation routines from the driver or runtime API is always aligned to at
least 256 bytes.

Reading non-naturally aligned 8-byte or 16-byte words produces incorrect results
(off by a few words), so special care must be taken to maintain alignment of the
starting address of any value or array of values of these types. A typical case where
this might be easily overlooked is when using some custom global memory
allocation scheme, whereby the allocations of multiple arrays (with multiple calls to
cudaMalloc() or cuMemAlloc()) is replaced by the allocation of a single large
block of memory partitioned into multiple arrays, in which case the starting address
of each array is offset from the block’s starting address.

3.3.2.1.2 Two-Dimensional Arrays

A common global memory access pattern is when each thread of index (tx,ty)
uses the following address to access one element of a 2D array of width width,
located at address BaseAddress of type type* (where type meets the
requirement described in Section 3.3.2.1.1):

 BaseAddress + width * ty + tx

For these accesses to be fully coalesced, both the width of the thread block and the
width of the array must be a multiple of the warp size (or only half the warp size for
devices of compute capability 1.x).

In particular, this means that an array whose width is not a multiple of this size will
be accessed much more efficiently if it is actually allocated with a width rounded up
to the closest multiple of this size and its rows padded accordingly.

3.3.2.2 Local Memory
CUDA local memory accesses only occur for some automatic variables. Automatic
variables that the compiler is likely to place in local memory are:

Chapter 3. Performance Guidelines

32 OpenCL Programming Guide Version 3.2

 Arrays for which it cannot determine that they are indexed with constant
quantities,

 Large structures or arrays that would consume too much register space,

 Any variable if the kernel uses more registers than available (this is also known
as register spilling).

Note that some mathematical functions have implementation paths that might
access local memory.

The local memory space resides in device memory, so local memory accesses have
same high latency and low bandwidth as global memory accesses and are subject to
the same requirements for memory coalescing as described in Section 3.3.2.1. Local
memory is however organized such that consecutive 32-bit words are accessed by
consecutive thread IDs. Accesses are therefore fully coalesced as long as all threads
in a warp access the same relative address (e.g. same index in an array variable, same
member in a structure variable).

On devices of compute capability 2.0, local memory accesses are always cached in
L1 and L2 in the same way as global memory accesses (see Section C.4.2).

3.3.2.3 Shared Memory
Shared memory is where OpenCL local memory resides.

Because it is on-chip, the shared memory space is much faster than the local and
global memory spaces. In fact, for all threads of a warp, accessing shared memory is
fast as long as there are no bank conflicts between the threads, as detailed below.

To achieve high bandwidth, shared memory is divided into equally-sized memory
modules, called banks, which can be accessed simultaneously. Any memory read or
write request made of n addresses that fall in n distinct memory banks can therefore
be serviced simultaneously, yielding an overall bandwidth that is n times as high as
the bandwidth of a single module.

However, if two addresses of a memory request fall in the same memory bank, there
is a bank conflict and the access has to be serialized. The hardware splits a memory
request with bank conflicts into as many separate conflict-free requests as necessary,
decreasing throughput by a factor equal to the number of separate memory requests.
If the number of separate memory requests is n, the initial memory request is said to
cause n-way bank conflicts.

To get maximum performance, it is therefore important to understand how memory
addresses map to memory banks in order to schedule the memory requests so as to
minimize bank conflicts. This is described in Sections C.3.3 and C.4.3 for devices of
compute capability 1.x and 2.0, respectively.

3.3.2.4 Constant Memory
The constant memory space resides in device memory and is cached in the constant
cache mentioned in Sections C.3.1 and C.4.1.

For devices of compute capability 1.x, a constant memory request for a warp is first
split into two requests, one for each half-warp, that are issued independently.

A request is then split into as many separate requests as there are different memory
addresses in the initial request, decreasing throughput by a factor equal to the
number of separate requests.

 Chapter 3. Performance Guidelines

OpenCL Programming Guide Version 3.2 33

The resulting requests are then serviced at the throughput of the constant cache in
case of a cache hit, or at the throughput of device memory otherwise.

3.3.2.5 Texture Memory
Texture memory is cached so an image read costs one memory read from device
memory only on a cache miss, otherwise it just costs one read from the texture
cache. The texture cache is optimized for 2D spatial locality, so threads of the same
warp that read image addresses that are close together will achieve best
performance. Also, it is designed for streaming reads with a constant latency, i.e. a
cache hit reduces DRAM bandwidth demand, but not read latency.

Reading device memory through image objects present some benefits that can make
it an advantageous alternative to reading device memory from global or constant
memory:

 If the memory reads do not follow the access patterns that global or constant
memory reads must respect to get good performance (see Sections 3.3.2.1 and
3.3.2.4), higher bandwidth can be achieved providing that there is locality in the
texture fetches (this is less likely for devices of compute capability 2.0 given that
global memory reads are cached on these devices);

 Addressing calculations are performed outside the kernel by dedicated units;

 Packed data may be broadcast to separate variables in a single operation;

 8-bit and 16-bit integer input data may be optionally converted to 32-bit
floating-point values in the range [0.0, 1.0] or [-1.0, 1.0].

However, within the same kernel call, the texture cache is not kept coherent with
respect to image writes, so that any image read to an address that has been written
to via an image write in the same kernel call returns undefined data. In other words,
a thread can safely read via an image object some memory location only if this
memory location has been updated by a previous kernel call or memory copy, but
not if it has been previously updated by the same thread or another thread from the
same kernel call.

3.4 Maximize Instruction Throughput

To maximize instruction throughput the application should:

 Minimize the use of arithmetic instructions with low throughput; this includes
trading precision for speed when it does not affect the end result, such as using

native_* instead of regular functions (see Section B.2), single-precision
instead of double-precision, or using the -cl-mad-enable build option;

 Minimize divergent warps caused by control flow instructions as detailed in
Section 3.4.2;

 Reduce the number of instructions, for example, by optimizing out
synchronization points whenever possible as described in Section 3.4.3 or by
using restricted pointers.

In this section, throughputs are given in number of operations per clock cycle per
multiprocessor. For a warp size of 32, one instruction results in 32 operations.
Therefore, if T is the number of operations per clock cycle, the instruction
throughput is one instruction every 32/T clock cycles.

Chapter 3. Performance Guidelines

34 OpenCL Programming Guide Version 3.2

All throughputs are for one multiprocessor. They must be multiplied by the number
of multiprocessors in the device to get throughput for the whole device.

3.4.1 Arithmetic Instructions

Table 3-1 gives the throughputs of the arithmetic instructions that are natively
supported in hardware for devices of various compute capabilities. For devices of
compute capability 2.0, two different warps execute half of the operations each
clock cycle (see Section C.4.1).

Table 3-1. Throughput of Native Arithmetic Instructions
(Operations per Clock Cycle per Multiprocessor)

Compute

Capability 1.x
Compute

Capability 2.0

32-bit floating-point

add, multiply, multiply-add
8 32

64-bit floating-point

add, multiply, multiply-add
1 16

32-bit integer

add, logical operation, shift, compare
8 32

24-bit integer multiply (mul24(x,y)) 8 Multiple instructions

32-bit integer

multiply, multiply-add, sum of absolute difference
Multiple instructions 32

32-bit floating-point

reciprocal, reciprocal square root,

base-2 logarithm (native_log),

base-2 exponential (native_exp),

sine (native_sin), cosine (native_cos)

2 4

Type conversions 8 32

Other instructions and functions are implemented on top of the native instructions.
The implementation may be different for devices of compute capability 1.x and
devices of compute capability 2.0, and the number of native instructions after
compilation may fluctuate with every compiler version.

Single-Precision Floating-Point Division

native_divide(x, y) provides faster single-precision floating-point division
than the division operator.

Single-Precision Floating-Point Reciprocal Square Root

To preserve IEEE-754 semantics the compiler cannot optimize 1.0/sqrtf() into
rsqrtf(). It is therefore recommended to invoke native_rsqrt() directly
where desired.

Single-Precision Floating-Point Square Root

 Chapter 3. Performance Guidelines

OpenCL Programming Guide Version 3.2 35

Single-precision floating-point square root is implemented as a reciprocal square
root followed by a reciprocal instead of a reciprocal square root followed by a
multiplication so that it gives correct results for 0 and infinity. Therefore, its
throughput is 1 operation per clock cycle for devices of compute capability 1.x and
2 operations per clock cycle for devices of compute capability 2.0.

Sine and Cosine

sin(x), cos(x), tan(x), sincos(x) are much more expensive and even more
so if the absolute value of x needs to be reduced.

More precisely, the argument reduction code comprises two code paths referred to
as the fast path and the slow path, respectively.

The fast path is used for arguments sufficiently small in magnitude and essentially
consists of a few multiply-add operations. The slow path is used for arguments large
in magnitude and consists of lengthy computations required to achieve correct
results over the entire argument range.

At present, the argument reduction code for the trigonometric functions selects the
fast path for arguments whose magnitude is less than 48039.0f for the single-
precision functions, and less than 2147483648.0 for the double-precision functions.

As the slow path requires more registers than the fast path, an attempt has been
made to reduce register pressure in the slow path by storing some intermediate
variables in CUDA local memory, which may affect performance because of local
memory high latency and bandwidth (see Section 3.3.2.2). At present, 28 bytes of
local memory are used by single-precision functions, and 44 bytes are used by
double-precision functions. However, the exact amount is subject to change.

Due to the lengthy computations and use of local memory in the slow path, the
throughput of these trigonometric functions is lower by one order of magnitude
when the slow path reduction is required as opposed to the fast path reduction.

Integer Arithmetic

On devices of compute capability 1.x, 32-bit integer multiplication is implemented
using multiple instructions as it is not natively supported. 24-bit integer
multiplication is natively supported however via the [u]mul24 function. Using
[u]mul24 instead of the 32-bit multiplication operator whenever possible usually
improves performance for instruction bound kernels. It can have the opposite effect
however in cases where the use of [u]mul24 inhibits compiler optimizations.

On devices of compute capability 2.0, 32-bit integer multiplication is natively
supported, but 24-bit integer multiplication is not. [u]mul24 is therefore
implemented using multiple instructions and should not be used.

Integer division and modulo operation are costly: tens of instructions on devices of
compute capability 1.x, below 20 instructions on devices of compute capability 2.0.
They can be replaced with bitwise operations in some cases: If n is a power of 2,
(i/n) is equivalent to (i>>log2(n)) and (i%n) is equivalent to (i&(n-1));
the compiler will perform these conversions if n is literal.

Type Conversion

Sometimes, the compiler must insert conversion instructions, introducing additional
execution cycles. This is the case for:

Chapter 3. Performance Guidelines

36 OpenCL Programming Guide Version 3.2

 Functions operating on variables of type char or short whose operands
generally need to be converted to int,

 Double-precision floating-point constants (i.e. those constants defined without
any type suffix) used as input to single-precision floating-point computations (as
mandated by C/C++ standards).

This last case can be avoided by using single-precision floating-point constants,
defined with an f suffix such as 3.141592653589793f, 1.0f, 0.5f.

3.4.2 Control Flow Instructions

Any flow control instruction (if, switch, do, for, while) can significantly
impact the effective instruction throughput by causing threads of the same warp to
diverge (i.e. to follow different execution paths). If this happens, the different
executions paths have to be serialized, increasing the total number of instructions
executed for this warp. When all the different execution paths have completed, the
threads converge back to the same execution path.

To obtain best performance in cases where the control flow depends on the thread
ID, the controlling condition should be written so as to minimize the number of
divergent warps. This is possible because the distribution of the warps across the
block is deterministic as mentioned in Section 2.1.1. A trivial example is when the
controlling condition only depends on (get_local_id(0) / WSIZE) where
WSIZE is the warp size. In this case, no warp diverges since the controlling
condition is perfectly aligned with the warps.

Sometimes, the compiler may unroll loops or it may optimize out if or switch
statements by using branch predication instead, as detailed below. In these cases, no
warp can ever diverge. The programmer can also control loop unrolling using the
#pragma unroll directive (see cl_nv_pragma_unroll extension).

When using branch predication none of the instructions whose execution depends
on the controlling condition gets skipped. Instead, each of them is associated with a
per-thread condition code or predicate that is set to true or false based on the
controlling condition and although each of these instructions gets scheduled for
execution, only the instructions with a true predicate are actually executed.
Instructions with a false predicate do not write results, and also do not evaluate
addresses or read operands.

The compiler replaces a branch instruction with predicated instructions only if the
number of instructions controlled by the branch condition is less or equal to a
certain threshold: If the compiler determines that the condition is likely to produce
many divergent warps, this threshold is 7, otherwise it is 4.

3.4.3 Synchronization Instruction

Throughput for barrier() is 8 operations per clock cycle for devices of compute
capability 1.x and 16 operations per clock cycle for devices of compute capability
2.0.

Note that barrier() can impact performance by forcing the multiprocessor to
idle as detailed in Section 3.2.3.

 Chapter 3. Performance Guidelines

OpenCL Programming Guide Version 3.2 37

Because a warp executes one common instruction at a time, threads within a warp
are implicitly synchronized and this can sometimes be used to omit barrier() for
better performance.

In the following code sample, for example, both calls to barrier() are required to
get the expected result (i.e. result[i] = 2 * myArray[i] for i > 0).
Without synchronization, any of the two references to myArray[tid] could
return either 2 or the value initially stored in myArray, depending on whether the
memory read occurs before or after the memory write from
myArray[tid + 1] = 2.

// myArray is an array of integers located in global or shared

// memory

__kernel void myKernel(__global int* result) {

 int tid = get_local_id(0);

 ...

 int ref1 = myArray[tid] * 1;

 barrier(CLK_LOCAL_MEM_FENCE|CLK_GLOBAL_MEM_FENCE);

 myArray[tid + 1] = 2;

 barrier(CLK_LOCAL_MEM_FENCE|CLK_GLOBAL_MEM_FENCE);

 int ref2 = myArray[tid] * 1;

 result[tid] = ref1 * ref2;

 ...

}

However, in the following slightly modified code sample, threads are guaranteed to
belong to the same warp, so that there is no need for any barrier().

// myArray is an array of integers located in global or shared

// memory

__kernel void myKernel(__global int* result) {

 int tid = get_local_id(0);

 ...

 if (tid < warpSize) {

 int ref1 = myArray[tid] * 1;

 myArray[tid + 1] = 2;

 int ref2 = myArray[tid] * 1;

 result[tid] = ref1 * ref2;

 }

 ...

}

Simply removing the barrier() is not enough however; myArray must also be
declared as volatile as described in Section 2.2.2.

Appendix A.
CUDA-Enabled GPUs

Table C-1 lists all CUDA-enabled devices with their compute capability, number of
multiprocessors, and number of CUDA cores.

These, as well as the clock frequency and the total amount of device memory, can
be queried using the runtime or driver API (see reference manual).

Table C-1. CUDA-Enabled Devices with Compute Capability,
Number of Multiprocessors, and Number of CUDA
Cores

 Compute
Capability

Number of
Multiprocessors

Number of
CUDA Cores

GeForce GTX 480 2.0 15 480

GeForce GTX 470 2.0 14 448

GeForce GTX 295 1.3 2x30 2x240

GeForce GTX 285, GTX 280 1.3 30 240

GeForce GTX 260 1.3 24 192

GeForce 9800 GX2 1.1 2x16 2x128

GeForce GTS 250, GTS 150,
9800 GTX, 9800 GTX+,
8800 GTS 512, GTX 285M,
GTX 280M

1.1 16 128

GeForce 8800 Ultra, 8800 GTX 1.0 16 128

GeForce 9800 GT, 8800 GT,
GTX 260M, 9800M GTX

1.1 14 112

GeForce GT 240, GTS 360M,
GTS 350M

1.2 12 96

GeForce GT 130, 9600 GSO,
8800 GS, 8800M GTX, GTS 260M,
GTS 250M, 9800M GT

1.1 12 96

GeForce 8800 GTS 1.0 12 96

GeForce GT 335M 1.2 9 72

GeForce 9600 GT, 8800M GTS,
9800M GTS

1.1 8 64

GeForce GT 220, GT 330M,
GT 325M

1.2 6 48

GeForce 9700M GT, GT 240M, 1.1 6 48

Appendix A. CUDA-Enabled GPUs

40 OpenCL Programming Guide Version 3.2

 Compute
Capability

Number of
Multiprocessors

Number of
CUDA Cores

GT 230M

GeForce GT 120, 9500 GT,
8600 GTS, 8600 GT, 9700M GT,
9650M GS, 9600M GT, 9600M GS,
9500M GS, 8700M GT, 8600M GT,
8600M GS

1.1 4 32

GeForce 210, 310M, 305M 1.2 2 16

GeForce G100, 8500 GT, 8400 GS,
8400M GT, 9500M G, 9300M G,
8400M GS, 9400 mGPU,
9300 mGPU, 8300 mGPU,
8200 mGPU, 8100 mGPU, G210M,
G110M

1.1 2 16

GeForce 9300M GS, 9200M GS,
9100M G, 8400M G, G105M

1.1 1 8

Tesla C2050 2.0 14 448

Tesla S1070 1.3 4x30 4x240

Tesla C1060 1.3 30 240

Tesla S870 1.0 4x16 4x128

Tesla D870 1.0 2x16 2x128

Tesla C870 1.0 16 128

Quadro Plex 2200 D2 1.3 2x30 2x240

Quadro Plex 2100 D4 1.1 4x14 4x112

Quadro Plex 2100 Model S4 1.0 4x16 4x128

Quadro Plex 1000 Model IV 1.0 2x16 2x128

Quadro FX 5800 1.3 30 240

Quadro FX 4800 1.3 24 192

Quadro FX 4700 X2 1.1 2x14 2x112

Quadro FX 3700M, FX 3800M 1.1 16 128

Quadro FX 5600 1.0 16 128

Quadro FX 3700 1.1 14 112

Quadro FX 2800M 1.1 12 96

Quadro FX 4600 1.0 12 96

Quadro FX 1800M 1.2 9 72

Quadro FX 3600M 1.1 8 64

Quadro FX 880M, NVS 5100M 1.2 6 48

Quadro FX 2700M 1.1 6 48

Quadro FX 1700, FX 570,
NVS 320M, FX 1700M, FX 1600M,
FX 770M, FX 570M

1.1 4 32

Quadro FX 380 LP, FX 380M,
NVS 3100M, NVS 2100M

1.2 2 16

Quadro FX 370, NVS 290,
NVS 140M, NVS 135M, FX 360M

1.1 2 16

Quadro FX 370M, NVS 130M 1.1 1 8

Appendix B.
Mathematical Functions Accuracy

B.1 Standard Functions

Error bounds in this section are generated from extensive but not exhaustive tests,
so they are not guaranteed bounds.

B.1.1 Single-Precision Floating-Point Functions
Table C-1 lists errors for the standard single-precision floating-point functions.

The recommended way to round a single-precision floating-point operand to an
integer, with the result being a single-precision floating-point number is rint(),
not round(). The reason is that round() maps to an 8-instruction sequence on
the device, whereas rint() maps to a single instruction. trunc(), ceil(), and
floor() each map to a single instruction as well.

Table C-1. Mathematical Standard Library Functions with
Maximum ULP Error

The maximum error is stated as the absolute value of the difference

in ulps between a correctly rounded single-precision result and the

result returned by the CUDA library function.

Function Maximum ulp error

x+y 0 (IEEE-754 round-to-nearest-even)

(except for devices of compute capability 1.x when
addition is merged into an FMAD)

x*y 0 (IEEE-754 round-to-nearest-even)

(except for devices of compute capability 1.x when
multiplication is merged into an FMAD)

x/y 0 for compute capability ≥ 2 when compiled with
-prec-div=true

2 (full range), otherwise

1/x 0 for compute capability ≥ 2 when compiled with
-prec-div=true

1 (full range), otherwise

rsqrt(x)

1/sqrt(x)

2 (full range)

Applies to 1/sqrt(x) only when it is converted to

Appendix B. Mathematical Functions Accuracy

42 OpenCL Programming Guide Version 3.2

Function Maximum ulp error
rsqrt(x) by the compiler.

sqrt(x) 0 for compute capability ≥ 2

3 (full range), otherwise

cbrt(x) 1 (full range)

hypot(x,y) 3 (full range)

exp(x) 2 (full range)

exp2(x) 2 (full range)

exp10(x) 2 (full range)

expm1(x) 1 (full range)

log(x) 1 (full range)

log2(x) 3 (full range)

log10(x) 3 (full range)

log1p(x) 2 (full range)

sin(x) 2 (full range)

cos(x) 2 (full range)

tan(x) 4 (full range)

sincos(x,cptr) 2 (full range)

asin(x) 4 (full range)

acos(x) 3 (full range)

atan(x) 2 (full range)

atan2(y,x) 3 (full range)

sinh(x) 3 (full range)

cosh(x) 2 (full range)

tanh(x) 2 (full range)

asinh(x) 3 (full range)

acosh(x) 4 (full range)

atanh(x) 3 (full range)

pow(x,y) 8 (full range)

erf(x) 3 (full range)

erfc(x) 6 (full range)

lgamma(x) 6 (outside interval -10.001 ... -2.264; larger inside)

tgamma(x) 11 (full range)

fma(x,y,z) 0 (full range)

frexp(x,exp) 0 (full range)

ldexp(x,exp) 0 (full range)

scalbn(x,n) 0 (full range)

scalbln(x,l) 0 (full range)

logb(x) 0 (full range)

ilogb(x) 0 (full range)

fmod(x,y) 0 (full range)

remainder(x,y) 0 (full range)

remquo(x,y,iptr) 0 (full range)

 Appendix B. Mathematical Functions Accuracy

OpenCL Programming Guide Version 3.2 43

Function Maximum ulp error

modf(x,iptr) 0 (full range)

fdim(x,y) 0 (full range)

trunc(x) 0 (full range)

round(x) 0 (full range)

rint(x) 0 (full range)

nearbyint(x) 0 (full range)

ceil(x) 0 (full range)

floor(x) 0 (full range)

lrint(x) 0 (full range)

lround(x) 0 (full range)

llrint(x) 0 (full range)

llround(x) 0 (full range)

B.1.2 Double-Precision Floating-Point Functions
Table C-2 lists errors for the standard double-precision floating-point functions.

These errors only apply when compiling for devices with native double-precision
support. When compiling for devices without such support, such as devices of
compute capability 1.2 and lower, the double type gets demoted to float by
default and the double-precision math functions are mapped to their single-
precision equivalents.

The recommended way to round a double-precision floating-point operand to an
integer, with the result being a double-precision floating-point number is rint(),
not round(). The reason is that round() maps to an 8-instruction sequence on
the device, whereas rint() maps to a single instruction. trunc(), ceil(), and
floor() each map to a single instruction as well.

Table C-2. Mathematical Standard Library Functions with
Maximum ULP Error

The maximum error is stated as the absolute value of the difference

in ulps between a correctly rounded double-precision result and the

result returned by the CUDA library function.

Function Maximum ulp error

x+y 0 (IEEE-754 round-to-nearest-even)

x*y 0 (IEEE-754 round-to-nearest-even)

x/y 0 (IEEE-754 round-to-nearest-even)

1/x 0 (IEEE-754 round-to-nearest-even)

sqrt(x) 0 (IEEE-754 round-to-nearest-even)

rsqrt(x) 1 (full range)

cbrt(x) 1 (full range)

hypot(x,y) 2 (full range)

exp(x) 1 (full range)

exp2(x) 1 (full range)

Appendix B. Mathematical Functions Accuracy

44 OpenCL Programming Guide Version 3.2

Function Maximum ulp error

exp10(x) 1 (full range)

expm1(x) 1 (full range)

log(x) 1 (full range)

log2(x) 1 (full range)

log10(x) 1 (full range)

log1p(x) 1 (full range)

sin(x) 2 (full range)

cos(x) 2 (full range)

tan(x) 2 (full range)

sincos(x,sptr,cptr) 2 (full range)

asin(x) 2 (full range)

acos(x) 2 (full range)

atan(x) 2 (full range)

atan2(y,x) 2 (full range)

sinh(x) 1 (full range)

cosh(x) 1 (full range)

tanh(x) 1 (full range)

asinh(x) 2 (full range)

acosh(x) 2 (full range)

atanh(x) 2 (full range)

pow(x,y) 2 (full range)

erf(x) 2 (full range)

erfc(x) 5 (full range)

lgamma(x) 4 (outside interval -11.0001 ... -2.2637; larger inside)

tgamma(x) 8 (full range)

fma(x,y,z) 0 (IEEE-754 round-to-nearest-even)

frexp(x,exp) 0 (full range)

ldexp(x,exp) 0 (full range)

scalbn(x,n) 0 (full range)

scalbln(x,l) 0 (full range)

logb(x) 0 (full range)

ilogb(x) 0 (full range)

fmod(x,y) 0 (full range)

remainder(x,y) 0 (full range)

remquo(x,y,iptr) 0 (full range)

modf(x,iptr) 0 (full range)

fdim(x,y) 0 (full range)

trunc(x) 0 (full range)

round(x) 0 (full range)

rint(x) 0 (full range)

nearbyint(x) 0 (full range)

ceil(x) 0 (full range)

 Appendix B. Mathematical Functions Accuracy

OpenCL Programming Guide Version 3.2 45

Function Maximum ulp error

floor(x) 0 (full range)

lrint(x) 0 (full range)

lround(x) 0 (full range)

llrint(x) 0 (full range)

llround(x) 0 (full range)

B.2 Native Functions

Table C-3 lists the native single-precision floating-point functions supported on the
CUDA architecture.

Both the regular floating-point division and native_divide(x,y) have the same
accuracy, but for 2126 < y < 2128, native_divide(x,y) delivers a result of zero,
whereas the regular division delivers the correct result to within the accuracy stated
in Table C-3. Also, for 2126 < y < 2128, if x is infinity, native_divide(x,y)
delivers a NaN (as a result of multiplying infinity by zero), while the regular division
returns infinity.

Table C-3. Single-Precision Floating-Point Native Functions
with Respective Error Bounds

Function Error bounds

native_recip(x) IEEE-compliant.

native_sqrt(x) IEEE-compliant.

native_divide(x,y) For y in [2-126, 2126], the maximum ulp error is 2.

native_exp(x) The maximum ulp error is
2 + floor(abs(1.16 * x)).

native_exp10(x) The maximum ulp error is
2 + floor(abs(2.95 * x)).

native_log(x) For x in [0.5, 2], the maximum absolute error is 2-

21.41, otherwise, the maximum ulp error is 3.

native_log2(x) For x in [0.5, 2], the maximum absolute error is 2-22,

otherwise, the maximum ulp error is 2.

native_log10(x) For x in [0.5, 2], the maximum absolute error is 2-24,

otherwise, the maximum ulp error is 3.

native_sin(x) For x in [- ,], the maximum absolute error is 2-21.41,

and larger otherwise.

native_cos(x) For x in [- ,], the maximum absolute error is 2-21.19,

and larger otherwise.

native_tan(x) Derived from its implementation as
native_sin(x) * (1 / native_cos(x)).

native_pow(x,y) Derived from its implementation as
exp2(y * native_log2(x)).

Appendix C.
Compute Capabilities

The general specifications and features of a compute device depend on its compute
capability (see Section 2.3).

Section C.1 gives the features and technical specifications associated to each
compute capability.

Section C.2 reviews the compliance with the IEEE floating-point standard.

Section C.3 and 0 give more details on the architecture of devices of compute
capability 1.x and 2.0, respectively.

C.1 Features and Technical Specifications

 Compute Capability

Extension Support

1.0 1.1 1.2 1.3 2.0

cl_khr_byte_addressable_store

Yes

cl_khr_icd

cl_nv_compiler_options

cl_nv_device_attribute_query

cl_nv_pragma_unroll

cl_khr_gl_sharing

cl_nv_d3d9_sharing

cl_nv_d3d10_sharing

cl_khr_d3d10_sharing

cl_nv_d3d11_sharing

cl_khr_global_int32_base_atomics

No Yes cl_khr_global_int32_extended_atomic
s

cl_khr_local_int32_base_atomics
No Yes

cl_khr_local_int32_extended_atomics

cl_khr_fp64 No Yes

Appendix C. Compute Capabilities

48 OpenCL Programming Guide Version 3.2

 Compute Capability

Technical Specifications 1.0 1.1 1.2 1.3 2.0

Maximum x- or y-dimension of a grid
of thread blocks

65535

Maximum number of threads per
block

512 1024

Maximum x- or y-dimension of a
block

512 1024

Maximum z-dimension of a block 64

Warp size 32

Maximum number of resident blocks
per multiprocessor

8

Maximum number of resident warps
per multiprocessor

24 32 48

Maximum number of resident threads
per multiprocessor

768 1024 1536

Number of 32-bit registers per
multiprocessor

8 K 16 K 32 K

Maximum amount of shared memory
per multiprocessor

16 KB 48 KB

Number of shared memory banks 16 32

Amount of local memory per thread 16 KB 512 KB

Constant memory size 64 KB

Cache working set per multiprocessor
for constant memory

8 KB

Cache working set per multiprocessor
for texture memory

Device dependent, between 6 KB and 8 KB

Maximum width for a 1D texture
reference bound to a CUDA array

8192 32768

Maximum width for a 1D texture
reference bound to linear memory

227

Maximum width and height for a 2D
texture reference bound to linear
memory or a CUDA array

65536 x 32768
65536 x
65536

Maximum width, height, and depth
for a 3D texture reference bound to
linear memory or a CUDA array

2048 x 2048 x 2048
4096 x
4096 x
4096

Maximum number of textures that
can be bound to a kernel

128

Maximum number of instructions per
kernel

2 million

C.2 Floating-Point Standard

All compute devices follow the IEEE 754-2008 standard for binary floating-point
arithmetic with the following deviations:

 There is no dynamically configurable rounding mode; however, most of the
operations support multiple IEEE rounding modes, exposed via device
intrinsics;

 Appendix C. Compute Capabilities

OpenCL Programming Guide Version 3.2 49

 There is no mechanism for detecting that a floating-point exception has
occurred and all operations behave as if the IEEE-754 exceptions are always
masked, and deliver the masked response as defined by IEEE-754 if there is an
exceptional event; for the same reason, while SNaN encodings are supported,
they are not signaling and are handled as;

 The result of a single-precision floating-point operation involving one or more
input NaNs is the quiet NaN of bit pattern 0x7fffffff;

 Double-precision floating-point absolute value and negation are not compliant
with IEEE-754 with respect to NaNs; these are passed through unchanged;

 For single-precision floating-point numbers on devices of compute
capability 1.x:

 Denormalized numbers are not supported; floating-point arithmetic and
comparison instructions convert denormalized operands to zero prior to
the floating-point operation;

 Underflowed results are flushed to zero;

 Some instructions are not IEEE-compliant:

 Addition and multiplication are often combined into a single multiply-
add instruction (FMAD), which truncates (i.e. without rounding) the
intermediate mantissa of the multiplication;

 Division is implemented via the reciprocal in a non-standard-compliant
way;

 Square root is implemented via the reciprocal square root in a non-
standard-compliant way;

 For addition and multiplication, only round-to-nearest-even and
round-towards-zero are supported via static rounding modes; directed
rounding towards +/- infinity is not supported;

To mitigate the impact of these restrictions, IEEE-compliant software (and
therefore slower) implementations are provided through the following
intrinsics:

 fma(float, float, float): single-precision fused multiply-add
with IEEE rounding modes,

 native_recip(float): single-precision reciprocal with IEEE
rounding modes,

 native_divide(float, float): single-precision division with
IEEE rounding modes,

 native_sqrt(float): single-precision square root with IEEE
rounding modes;

 For double-precision floating-point numbers on devices of compute
capability 1.x:

 Round-to-nearest-even is the only supported IEEE rounding mode for
reciprocal, division, and square root.

When compiling for devices without native double-precision floating-point support,
i.e. devices of compute capability 1.2 and lower, each double variable is converted
to single-precision floating-point format (but retains its size of 64 bits) and double-
precision floating-point arithmetic gets demoted to single-precision floating-point
arithmetic.

Appendix C. Compute Capabilities

50 OpenCL Programming Guide Version 3.2

Addition and multiplication are often combined into a single multiply-add
instruction:

 FMAD for single precision on devices of compute capability 1.x,

 FFMA for single precision on devices of compute capability 2.0.

As mentioned above, FMAD truncates the mantissa prior to use it in the addition.
FFMA, on the other hand, is an IEEE-754(2008) compliant fused multiply-add
instruction, so the full-width product is being used in the addition and a single
rounding occurs during generation of the final result. While FFMA in general has
superior numerical properties compared to FMAD, the switch from FMAD to
FFMA can cause slight changes in numeric results and can in rare circumstances
lead to slighty larger error in final results.

In accordance to the IEEE-754R standard, if one of the input parameters to
fmin() or fmax() is NaN, but not the other, the result is the non-NaN
parameter.

The conversion of a floating-point value to an integer value in the case where the
floating-point value falls outside the range of the integer format is left undefined by
IEEE-754. For compute devices, the behavior is to clamp to the end of the
supported range. This is unlike the x86 architecture behavior.

C.3 Compute Capability 1.x

C.3.1 Architecture

For devices of compute capability 1.x, a multiprocessor consists of:

 8 CUDA cores for integer and single-precision floating-point arithmetic
operations,

 1 double-precision floating-point unit for double-precision floating-point
arithmetic operations,

 2 special function units for single-precision floating-point transcendental
functions (these units can also handle single-precision floating-point
multiplications),

 1 warp scheduler.

To execute an instruction for all threads of a warp, the warp scheduler must
therefore issue the instruction over:

 4 clock cycles for an integer or single-precision floating-point arithmetic
instruction,

 32 clock cycles for a double-precision floating-point arithmetic instruction,

 16 clock cycles for a single-precision floating-point transcendental instruction.

A multiprocessor also has a read-only constant cache that is shared by all functional
units and speeds up reads from the constant memory space, which resides in device
memory.

Multiprocessors are grouped into Texture Processor Clusters (TPCs). The number of
multiprocessors per TPC is:

 Appendix C. Compute Capabilities

OpenCL Programming Guide Version 3.2 51

 2 for devices of compute capabilities 1.0 and 1.1,

 3 for devices of compute capabilities 1.2 and 1.3.

Each TPC has a read-only texture cache that is shared by all multiprocessors and
speeds up reads from the texture memory space, which resides in device memory.
Each multiprocessor accesses the texture cache via a texture unit that implements
the various addressing modes and data filtering mentioned.

The local and global memory spaces reside in device memory and are not cached.

C.3.2 Global Memory

A global memory request for a warp is split into two memory requests, one for each
half-warp, that are issued independently. Sections C.3.2.1 and C.3.2.2 describe how
the memory accesses of threads within a half-warp are coalesced into one or more
memory transactions depending on the compute capability of the device. Figure C-1
shows some examples of global memory accesses and corresponding memory
transactions based on compute capability.

The resulting memory transactions are serviced at the throughput of device
memory.

C.3.2.1 Devices of Compute Capability 1.0 and 1.1
To coalesce, the memory request for a half-warp must satisfy the following
conditions:

 The size of the words accessed by the threads must be 4, 8, or 16 bytes;

 If this size is:

 4, all 16 words must lie in the same 64-byte segment,

 8, all 16 words must lie in the same 128-byte segment,

 16, the first 8 words must lie in the same 128-byte segment and the last 8
words in the following 128-byte segment;

 Threads must access the words in sequence: The kth thread in the half-warp
must access the kth word.

If the half-warp meets these requirements, a 64-byte memory transaction, a 128-byte
memory transaction, or two 128-byte memory transactions are issued if the size of
the words accessed by the threads is 4, 8, or 16, respectively. Coalescing is achieved
even if the warp is divergent, i.e. there are some inactive threads that do not actually
access memory.

If the half-warp does not meet these requirements, 16 separate 32-byte memory
transactions are issued.

C.3.2.2 Devices of Compute Capability 1.2 and 1.3
Threads can access any words in any order, including the same words, and a single
memory transaction for each segment addressed by the half-warp is issued. This is
in contrast with devices of compute capabilities 1.0 and 1.1 where threads need to
access words in sequence and coalescing only happens if the half-warp addresses a
single segment.

More precisely, the following protocol is used to determine the memory transactions
necessary to service all threads in a half-warp:

Appendix C. Compute Capabilities

52 OpenCL Programming Guide Version 3.2

 Find the memory segment that contains the address requested by the lowest
numbered active thread. The segment size depends on the size of the words
accessed by the threads:

 32 bytes for 1-byte words,

 64 bytes for 2-byte words,

 128 bytes for 4-, 8- and 16-byte words.

 Find all other active threads whose requested address lies in the same segment.

 Reduce the transaction size, if possible:

 If the transaction size is 128 bytes and only the lower or upper half is used,
reduce the transaction size to 64 bytes;

 If the transaction size is 64 bytes (originally or after reduction from 128
bytes) and only the lower or upper half is used, reduce the transaction size
to 32 bytes.

 Carry out the transaction and mark the serviced threads as inactive.

 Repeat until all threads in the half-warp are serviced.

C.3.3 Shared Memory

Shared memory has 16 banks that are organized such that successive 32-bit words
are assigned to successive banks, i.e. interleaved. Each bank has a bandwidth of 32
bits per two clock cycles.

A shared memory request for a warp is split into two memory requests, one for each
half-warp, that are issued independently. As a consequence, there can be no bank
conflict between a thread belonging to the first half of a warp and a thread
belonging to the second half of the same warp.

If a non-atomic instruction executed by a warp writes to the same location in shared
memory for more than one of the threads of the warp, only one thread per half-
warp performs a write and which thread performs the final write is undefined.

C.3.3.1 32-Bit Strided Access
A common access pattern is for each thread to access a 32-bit word from an array
indexed by the thread ID tid and with some stride s:

__local float shared[32];

float data = shared[BaseIndex + s * tid];

In this case, threads tid and tid+n access the same bank whenever s*n is a
multiple of the number of banks (i.e. 16) or, equivalently, whenever n is a multiple
of 16/d where d is the greatest common divisor of 16 and s. As a consequence,
there will be no bank conflict only if half the warp size (i.e. 16) is less than or equal
to 16/d., that is only if d is equal to 1, i.e. s is odd.

Figure C-2 shows some examples of strided access for devices of compute capability
2.0. The same examples apply for devices of compute capability 1.x, but with 16
banks instead of 32.

C.3.3.2 32-Bit Broadcast Access
Shared memory features a broadcast mechanism whereby a 32-bit word can be read
and broadcast to several threads simultaneously when servicing one memory read

 Appendix C. Compute Capabilities

OpenCL Programming Guide Version 3.2 53

request. This reduces the number of bank conflicts when several threads read from
an address within the same 32-bit word. More precisely, a memory read request
made of several addresses is serviced in several steps over time by servicing one
conflict-free subset of these addresses per step until all addresses have been
serviced; at each step, the subset is built from the remaining addresses that have yet
to be serviced using the following procedure:

 Select one of the words pointed to by the remaining addresses as the broadcast
word;

 Include in the subset:

 All addresses that are within the broadcast word,

 One address for each bank (other than the broadcasting bank) pointed to
by the remaining addresses.

Which word is selected as the broadcast word and which address is picked up for
each bank at each cycle are unspecified.

A common conflict-free case is when all threads of a half-warp read from an address
within the same 32-bit word.

Figure C-3 shows some examples of memory read accesses that involve the
broadcast mechanism. The same examples apply for devices of compute capability
1.x, but with 16 banks instead of 32.

C.3.3.3 8-Bit and 16-Bit Access
8-bit and 16-bit accesses typically generate bank conflicts. For example, there are
bank conflicts if an array of char is accessed the following way:

__local char shared[32];

char data = shared[BaseIndex + tid];

because shared[0], shared[1], shared[2], and shared[3], for example,
belong to the same bank. There are no bank conflicts however, if the same array is
accessed the following way:

char data = shared[BaseIndex + 4 * tid];

C.3.3.4 Larger Than 32-Bit Access
Accesses that are larger than 32-bit per thread are split into 32-bit accesses that
typically generate bank conflicts.

For example, there are 2-way bank conflicts for arrays of doubles accessed as
follows:

__local double shared[32];

double data = shared[BaseIndex + tid];

as the memory request is compiled into two separate 32-bit requests with a stride of
two. One way to avoid bank conflicts in this case is two split the double operands
like in the following sample code:

__local int shared_lo[32];

__local int shared_hi[32];

int2 tmp;

double dataIn;

tmp = as_int2(dataIn);

shared_lo[BaseIndex + tid] = tmp.x;

Appendix C. Compute Capabilities

54 OpenCL Programming Guide Version 3.2

shared_hi[BaseIndex + tid] = tmp.y;

tmp = (int2)(shared_hi[BaseIndex + tid],

 shared_lo[BaseIndex + tid]);

double dataOut = as_double(tmp);

This might not always improve performance however and does perform worse on
devices of compute capabilities 2.0.

The same applies to structure assignments. The following code, for example:

__local struct type shared[32];

struct type data = shared[BaseIndex + tid];

results in:

 Three separate reads without bank conflicts if type is defined as

struct type {

 float x, y, z;

};

since each member is accessed with an odd stride of three 32-bit words;

 Two separate reads with bank conflicts if type is defined as

struct type {

 float x, y;

};

since each member is accessed with an even stride of two 32-bit words.

C.4 Compute Capability 2.0

C.4.1 Architecture

For devices of compute capability 2.0, a multiprocessor consists of:

 32 CUDA cores for integer and floating-point arithmetic operations,

 4 special function units for single-precision floating-point transcendental
functions,

 2 warp schedulers.

At every instruction issue time, each scheduler issues an instruction for some warp
that is ready to execute, if any. The first scheduler is in charge of the warps with an
odd ID and the second scheduler is in charge of the warps with an even ID. Note
that when a scheduler issues a double-precision floating-point instruction, the other
scheduler cannot issue any instruction.

A warp scheduler can issue an instruction to only half of the CUDA cores. To
execute an instruction for all threads of a warp, a warp scheduler must therefore
issue the instruction over:

 2 clock cycles for an integer or floating-point arithmetic instruction,

 2 clock cycles for a double-precision floating-point arithmetic instruction,

 8 clock cycles for a single-precision floating-point transcendental instruction.

 Appendix C. Compute Capabilities

OpenCL Programming Guide Version 3.2 55

A multiprocessor also has a read-only uniform cache that is shared by all functional
units and speeds up reads from the constant memory space, which resides in device
memory.

There is an L1 cache for each multiprocessor and an L2 cache shared by all
multiprocessors, both of which are used to cache accesses to local or global
memory, including temporary register spills.

Multiprocessors are grouped into Graphics Processor Clusters (GPCs). A GPC includes
four multiprocessors.

Each multiprocessor has a read-only texture cache to speed up reads from the
texture memory space, which resides in device memory. It accesses the texture cache
via a texture unit that implements the various addressing modes and data filtering.

C.4.2 Global Memory

A cache line in L1 or L2 is 128 bytes and maps to a 128-byte aligned segment in
device memory.

If the size of the words accessed by each thread is more than 4 bytes, a memory
request by a warp is first split into separate 128-byte memory requests that are
issued independently:

 Two memory requests, one for each half-warp, if the size is 8 bytes,

 Four memory requests, one for each quarter-warp, if the size is 16 bytes.

Each memory request is then broken down into cache line requests that are issued
independently. A cache line request is serviced at the throughput of L1 or L2 cache
in case of a cache hit, or at the throughput of device memory, otherwise.

Note that threads can access any words in any order, including the same words.

If a non-atomic instruction executed by a warp writes to the same location in global
memory for more than one of the threads of the warp, only one thread performs a
write and which thread does it is undefined.

Appendix C. Compute Capabilities

56 OpenCL Programming Guide Version 3.2

Figure C-1. Examples of Global Memory Accesses by a Warp,
4-Byte Word per Thread, and Associated Memory
Transactions Based on Compute Capability

128 160 192 256 224 96 288 Addresses:

0 31 … Threads:

Compute capability:

Memory transactions:

1.0 and 1.1

8 x 32B at 128
8 x 32B at 160
8 x 32B at 192
8 x 32B at 224

1.2 and 1.3

1 x 64B at 128
1 x 64B at 192

2.0

1 x 128B at 128

Aligned and non-sequential

Uncached Cached

128 160 192 256 224 96 288 Addresses:

0 31 … Threads:

Compute capability:

Memory transactions:

1.0 and 1.1

1 x 64B at 128
1 x 64B at 192

1.2 and 1.3

1 x 64B at 128
1 x 64B at 192

2.0

1 x 128B at 128

Aligned and sequential

Uncached Cached

128 160 192 256 224 96 288 Addresses:

0 31 … Threads:

Compute capability:

Memory transactions:

1.0 and 1.1

7 x 32B at 128
8 x 32B at 160
8 x 32B at 192
8 x 32B at 224
1 x 32B at 256

1.2 and 1.3

1 x 128B at 128
1 x 64B at 192
1 x 32B at 256

2.0

1 x 128B at 128
1 x 128B at 256

Misaligned and sequential

Uncached Cached

 Appendix C. Compute Capabilities

OpenCL Programming Guide Version 3.2 57

C.4.3 Shared Memory

Shared memory has 32 banks that are organized such that successive 32-bit words
are assigned to successive banks, i.e. interleaved. Each bank has a bandwidth of 32
bits per two clock cycles. Therefore, unlike for devices of lower compute capability,
there may be bank conflicts between a thread belonging to the first half of a warp
and a thread belonging to the second half of the same warp.

A bank conflict only occurs if two or more threads access any bytes within different
32-bit words belonging to the same bank. If two or more threads access any bytes
within the same 32-bit word, there is no bank conflict between these threads: For
read accesses, the word is broadcast to the requesting threads (unlike for devices of
compute capability 1.x, multiple words can be broadcast in a single transaction); for
write accesses, each byte is written by only one of the threads (which thread
performs the write is undefined).

This means, in particular, that unlike for devices of compute capability 1.x, there are
no bank conflicts if an array of char is accessed as follows, for example:

__local char shared[32];

char data = shared[BaseIndex + tid];

C.4.3.1 32-Bit Strided Access
A common access pattern is for each thread to access a 32-bit word from an array
indexed by the thread ID tid and with some stride s:

__local float shared[32];

float data = shared[BaseIndex + s * tid];

In this case, threads tid and tid+n access the same bank whenever s*n is a
multiple of the number of banks (i.e. 32) or, equivalently, whenever n is a multiple
of 32/d where d is the greatest common divisor of 32 and s. As a consequence,
there will be no bank conflict only if the warp size (i.e. 32) is less than or equal to
32/d., that is only if d is equal to 1, i.e. s is odd.

Figure C-2 shows some examples of strided access.

C.4.3.2 Larger Than 32-Bit Access
64-bit and 128-bit accesses are specifically handled to minimize bank conflicts as
described below.

Other accesses larger than 32-bit are split into 32-bit, 64-bit, or 128-bit accesses.
The following code, for example:

struct type {

 float x, y, z;

};

__local struct type shared[32];

struct type data = shared[BaseIndex + tid];

results in three separate 32-bit reads without bank conflicts since each member is
accessed with a stride of three 32-bit words.

64-Bit Accesses

For 64-bit accesses, a bank conflict only occurs if two or more threads in either of
the half-warps access different addresses belonging to the same bank.

Appendix C. Compute Capabilities

58 OpenCL Programming Guide Version 3.2

Unlike for devices of compute capability 1.x, there are no bank conflicts for arrays
of doubles accessed as follows, for example:

__local double shared[32];

double data = shared[BaseIndex + tid];

128-Bit Accesses

The majority of 128-bit accesses will cause 2-way bank conflicts, even if no two
threads in a quarter-warp access different addresses belonging to the same bank.
Therefore, to determine the ways of bank conflicts, one must add 1 to the
maximum number of threads in a quarter-warp that access different addresses
belonging to the same bank.

C.4.4 Constant Memory

In addition to the constant memory space supported by devices of all compute
capabilities (where __constant variables reside), devices of compute capability 2.0
support the LDU (LoaD Uniform) instruction that the compiler use to load any
variable that is:

 pointing to global memory,

 read-only in the kernel (programmer can enforce this using the const
keyword),

 not dependent on thread ID.

 Appendix C. Compute Capabilities

OpenCL Programming Guide Version 3.2 59

Left: Linear addressing with a stride of one 32-bit word (no bank conflict).

Middle: Linear addressing with a stride of two 32-bit words (2-way bank conflicts).

Right: Linear addressing with a stride of three 32-bit words (no bank conflict).

Figure C-2 Examples of Strided Shared Memory Accesses for
Devices of Compute Capability 2.0

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Banks: Threads:

0

1

2

4

3

5

6

7

8

9

10

12

11

13

14

15

16

17

18

20

19

21

22

23

24

25

26

28

27

29

30

31 31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Banks: Threads:

0

1

2

4

3

5

6

7

8

9

10

12

11

13

14

15

16

17

18

20

19

21

22

23

24

25

26

28

27

29

30

31 31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Banks: Threads:

0

1

2

4

3

5

6

7

8

9

10

12

11

13

14

15

16

17

18

20

19

21

22

23

24

25

26

28

27

29

30

31

Appendix C. Compute Capabilities

60 OpenCL Programming Guide Version 3.2

Left: Conflict-free access via random permutation.

Middle: Conflict-free access since threads 3, 4, 6, 7, and 9 access the same word within bank 5.

Right: Conflict-free broadcast access (all threads access the same word).

Figure C-3 Examples of Irregular and Colliding Shared Memory
Accesses for Devices of Compute Capability 2.0

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Banks: Threads:

0

1

2

4

3

5

6

7

8

9

10

12

11

13

14

15

16

17

18

20

19

21

22

23

24

25

26

28

27

29

30

31 31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Banks: Threads:

0

1

2

4

3

5

6

7

8

9

10

12

11

13

14

15

16

17

18

20

19

21

22

23

24

25

26

28

27

29

30

31 31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Banks: Threads:

0

1

2

4

3

5

6

7

8

9

10

12

11

13

14

15

16

17

18

20

19

21

22

23

24

25

26

28

27

29

30

31

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, Tesla, and Quadro are trademarks or registered trademarks of NVIDIA
Corporation. Other company and product names may be trademarks of the respective companies with which
they are associated.

Copyright

© 2007-2010 NVIDIA Corporation. All rights reserved.

This work incorporates portions of on an earlier work: Scalable Parallel Programming with CUDA, in ACM
Queue, VOL 6, No. 2 (March/April 2008), © ACM, 2008. http://mags.acm.org/queue/20080304/?u1=texterity"

http://mags.acm.org/queue/20080304/?u1=texterity

	Introduction
	From Graphics Processing to General-Purpose Parallel Computing
	CUDA™: a General-Purpose Parallel Computing Architecture
	A Scalable Programming Model
	Document’s Structure

	OpenCL on the CUDA Architecture
	CUDA Architecture
	SIMT Architecture
	Hardware Multithreading

	Compilation
	PTX
	Volatile

	Compute Capability
	Mode Switches
	Matrix Multiplication Example

	Performance Guidelines
	Overall Performance Optimization Strategies
	Maximize Utilization
	Application Level
	Device Level
	Multiprocessor Level

	Maximize Memory Throughput
	Data Transfer between Host and Device
	Device Memory Accesses
	Global Memory
	Size and Alignment Requirement
	Two-Dimensional Arrays

	Local Memory
	Shared Memory
	Constant Memory
	Texture Memory

	Maximize Instruction Throughput
	Arithmetic Instructions
	Control Flow Instructions
	Synchronization Instruction

	CUDA-Enabled GPUs
	Mathematical Functions Accuracy
	Standard Functions
	Single-Precision Floating-Point Functions
	Double-Precision Floating-Point Functions

	Native Functions
	Compute Capabilities
	Features and Technical Specifications
	Floating-Point Standard
	Compute Capability 1.x
	Architecture
	Global Memory
	Devices of Compute Capability 1.0 and 1.1
	Devices of Compute Capability 1.2 and 1.3

	Shared Memory
	32-Bit Strided Access
	32-Bit Broadcast Access
	8-Bit and 16-Bit Access
	Larger Than 32-Bit Access

	Compute Capability 2.0
	Architecture
	Global Memory
	Shared Memory
	32-Bit Strided Access
	Larger Than 32-Bit Access

	Constant Memory

