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Abstract
The Damas-Milner type inference algorithm (commonly known as
algorithm W) is at the core of all ML type checkers. Although the
algorithm is known to have poor worst-case behavior [8], in prac-
tice well-engineered type checkers will run in approximately linear
time. To achieve this efficiency, implementations need to improve
on algorithm W’s method of scanning the complete type environ-
ment to determine whether a type variable can be generalized at
a let binding. Following a suggestion of Damas, most ML type
checkers use an alternative method based on ranking unification
variables to track their position in the type environment.

Here we formalize two such ranking systems, one based on
lambda depth (used in the SML/NJ compiler), and the other based
on let depth (used in OCaml, for instance). Each of these systems
is formalized both with and without the value restriction, and they
are proved correct relative to the classic algorithm W . Our formal-
izations of the various algorithms use simple abstract machines that
are similar to those derived from small-step evaluation semantics.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Compilers

General Terms Languages

Keywords Type Inference, Type Checking, Algorithm W, Stan-
dard ML, Functional Programming, Compilers

1. Introduction
ML compilers have adapted Milner’s Algorithm W [?] to type-
check realistically rich languages with reasonable efficiency. But
to achieve efficiency and the ability to scale to very large programs,
implementations of ML type inference must overcome various en-
gineering challenges. The challenge we focus on here is the basic
problem of determining which type variables can be generalized
to create polymorphic types at let bindings. In algorithm W , the
criterion for generalization is that the type variable does not appear
free in the “context”, represented by a type environment. Since type
environments can grow quite large, both in length and the sizes of
types they contain, this test can be expensive (quadratic in the size
of the program). More efficient algorithms have been developed
that use ranking of type variables and a simple rank bound to test
for generalizability. The rank associated with a type variable indi-
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Figure 1. Summary of Type Inference Abstract Machines

cates its “position” in the type environment, where the type envi-
ronment is viewed as ordered from outer to inner bindings.

There are two main variants of this variable ranking approach.
The one originally suggested by Damas [1] is based on depth of
lambda bindings, and is used in SML/NJ. An equivalent alterna-
tive is based on depth of let bindings [13]. Although these im-
plementation techniques have been used in compilers for a couple
of decades, their formalization and proof of correctness has been
largely neglected. Our goal is to begin to address that gap by prov-
ing that these ranked variable variants are equivalent to the original
algorithmW . We start by considering type checkers for a pure form
of microML (which we will call Pure ML), and then go on to in-
troduce side-effects (ref) and the value restriction [18], calling this
language variant Impure ML.

Our approach is to formalize the various type inference algo-
rithms that we will be studying using simple abstract machines
such as those derived from small-step operational semantics for
evaluation [2]. We then prove equivalences between these abstract
machines, whose operation differs mainly at the point where poly-
morphic generalization occurs for let bindings. Since we have three
variants of the type inference algorithmW (classic, lambda-ranked,
and let-ranked) for two variants of the language (Pure and Impure
ML), we have a total of six abstract machines, as shown in Fig. 1.

2. An Abstract Machine for Classic AlgorithmW
The abstract machines that we use here are simplified versions of
the abstract machines used in an earlier paper [4], where we were
viewing type checking and inference as a term-rewriting system
that incrementally transformed expressions into their types. The
abstract machines described below express type inference as a
process of nonstandard evaluation of expressions, yielding their
types.

The language we will start with is the usual minimal ML,
presented in Fig. 3. This language can easily be extended with
constant expressions (e.g., numbers, booleans), and with additional
basic type constructors (e.g., Int, Bool, List), and we will feel free
to do so in examples. Later on we will introduce references, which
will force us to complicate type inference by introducing the value
restriction.

Types (τ ∈ TYPE) are constructed over two forms of type
variable. Polymorphic bound type variables (α, β, γ) will occur
only in the bodies of polytypes (PTYPE) where they appear in
the quantifier prefix – in other words, the types that occur during
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W(Γ, x) = (id, I(Γ(x)))
W(Γ, λx.e) = let (θ, τ) = W(Γ[x : ξ], e) ξ fresh

in (θ, θξ → τ)
W(Γ, e e′) = let (θ, τ) = W(Γ, e)

(θ′, τ ′) = W(θΓ, e′)
θ′′ = U(θ′τ, τ ′ → ξ) ξ fresh

in (θ′′θ′θ, θ′′ξ)
W(Γ, let x = e in e′) = let (θ, τ) = W(Γ, e)

(θ′, τ ′) = W(θΓ[x : σ], e′)
in (θ′θ, τ ′) σ = ∀α.{α/GΓ(τ)}τ

Figure 2. Algorithm W from Lee and Yi [5]

type inference will never contain free occurrences of such type
variables. The other type variables (ξ, ζ, φ, ψ) are called unification
variables, or univariables for short. They should be considered part
of the internal machinery of type inference and should generally be
eliminated from the final type produced.1

It should also be noted that although neither types nor poly-
types (PTYPE) will contain free occurrences of polymorphic type
variables, types and polytypes can both contain occurrences of uni-
variables (which are necessarily free occurrences). We will use the
term monotype for types τ ∈ TYPE to distinguish them from poly-
types σ ∈ PTYPE, even though monotypes may contain free oc-
currences of univariables.

For reference, Fig. 2 shows a standard version of algorithm W
for Pure ML, following the modern presentation given in Lee and
Yi [5]. This version differs from Milner’s original formulation [9]
in that there are explicit generalization and generic instantiation
steps that respectively introduce and eliminate polytypes.

Note that W returns only monotypes τ as results, while both
types and polytypes occur in type environments. We see that poly-
types are created and then immediately entered into the type envi-
ronment while processing let bindings. Sometimes, when no uni-
variables are generalizable, these let-bound polytypes will be de-
generate in the sense that the quantifier prefix is empty.

New univariables are introduced at three points: (1) when enter-
ing a lambda abstraction, where we introduce a new univariable to
represent the unknown type of the λ-bound variable, (2) when typ-
ing a variable, where we create a generic instance of the polytype
bound to the variable in the type environment, and (3) in the appli-
cation case, where we introduce a fresh univariable to represent the
return type before unifying. Conversely, univariables can be elimi-
nated (1) by being instantiated (i.e. replaced by substitution), or (2)
by being generalized at a let binding.

Using standard methods [14], we can transform the classic al-
gorithm of Fig. 2 into the abstract machine in Fig. 4.

The abstract machine states consist of three components, or
registers. The control, the first register, can be either the next
(sub)expression we are type checking or a monotype produced by
completing the typing of a subexpression. The type environment,
the second register, maps program variables to either monotypes
(for λ bindings) or polytypes (for let bindings). The type envi-
ronment context is an ordered sequence of λ and let-bindings that
map expression variables to their types, with the outermost bind-
ings first, so that the λ and let-nesting is reflected in its binding
order. The distinction between let and lambda bindings is indicated

1 A top level expression like λx.x will be assigned a type ξ → ξ con-
taining a free univariable. We can eliminate this univariable by supplying
an implicit top level let declaration context for the expression, typing it as
let it = λx.x where the scope is the “rest of the program”. Then the uni-
variable can be eliminated by generalization. If the value restriction applies
this will not always work (e.g., ref nil), and we may have to eliminate the
univariables by dummy instantiation with arbitrary ground types, as is done
in the SML/NJ type checker.

e ::= x | λx.e | e1 e2 | let x = e1 in e2 EXP
τ ::= α | ξ | τ → τ TYPE
σ ::= ∀α.τ PTYPE

Figure 3. Pure ML mini-language

by whether the type in the binding is a polytype (possibly degener-
ate) introduced by a let, or a monotype, introduced by a lambda.

The stack, the final register, represents a typing continuation
that keeps track of what still needs to be done to complete the
type checking. λ and let stack frames tell the machine when to pop
off associated λ- and let-bindings from the type environment (i.e.,
when the type checker is leaving the scope of the λ or let body).
(� e) and (τ �) frames save relevant context information when
type checking the operator and operands of applications. Finally,
let x in e frames tell the machine to generalize the control type,
which must be the type of the definien, and to add the resulting
polytype to the type environment when type checking the body e.

As in the original algorithm W , polytypes are only introduced
by [let-body], which puts them in the environment. The [var] rule
looks up a variable in the type environment and immediately ap-
plies I to generically instantiate the result, eliminating the polytype
and (possibly) introducing fresh univariables. Consequently, poly-
types only exist in the typing context and are never found in the
control.

The [λ-in] rule pushes a new λ-binding onto the type environ-
ment, with a fresh univariable as the type of the bound variable.
Simultaneously, a λ frame is pushed onto the stack as a reminder
to pop off the associated λ binding when we have finished type
checking the body. The [λ-out] rule pops off the λ-binding and
constructs the function type to complete the typing of an abstrac-
tion. The [let-out] rule plays an analogous role for let expressions,
popping the let-binding from the typing context and returning the
body type. The remaining rules essentially serve as search rules.

The [app-out] rule sets up the function-argument agreement
constraint, using a fresh univariable, and solves it by unification
(U defined in Fig. 5). In the process, the unification may eliminate
some univariables. Unification fails (in a stuck state) if the function
and argument cannot be made to agree, in which case a type error
is signaled.

It is straightforward to show that the Algorithm W abstract
machine of Fig. 4 is equivalent to the classical algorithm of Fig. 2,
in the sense that for any closed expression e,

W(e, ∅) = (τ, θ) ⇔ (e, ∅, •) 7→ (τ, ∅, •) (1)

and we therefore take the abstract machine as our reference imple-
mentation from here on.

3. Depth Ranking Techniques
Let us make some some key observations about the effect of sub-
stitutions on the occurrence of univariables in type environments,
which is the critical factor in deciding whether a univariable can be
generalized.

First note that for any ξ ∈ ftv(Γ) we can define the the rank of
ξ relative to the environment Γ as the index (counting from 1) of
the first (i.e., outermost) binding in Γ containing an occurrence of
ξ. We will denote this rank by R(ξ,Γ). If ξ 6∈ ftv(Γ), we define
R(ξ,Γ) = ∞.

So at a let binding, a univariable is generalizable if and only if
its rank relative to the current type environment is infinite:

ξ ∈ GΓ(τ) ⇔ ξ ∈ ftv(τ) and R(ξ,Γ) = ∞
Another useful observation is that at a let binding, if we general-

ize relative to the current environment Γ to get a polytype σ and add
the polytype binding [x : σ] to Γ, then any univariable ξ ∈ ftv(σ)
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Γ ::= ∅ | Γ[x : τ ] | Γ[x : σ] Tyenv
f ::= λ | (� e) | (τ �) | let x in e | let Frames
k ::= • | f :: k Stack
c ::= e | τ Control
s ::= (c, Γ, k) States

Initial States s0 = (e, ∅, •)

(x, Γ, k) 7→ (I(Γ(x)), Γ, k) [var]
(λx.e, Γ, k) 7→ (e, Γ[x : ξ], λ :: k) [λ-in]

ξ fresh
(τ, Γ[x : τ ′], λ :: k) 7→ (τ ′ → τ, Γ, k) [λ-out]

(e1 e2, Γ, k) 7→ (e1, Γ, (� e2) :: k) [app-l]
(τ, Γ, (� e2) :: k) 7→ (e2, Γ, (τ �) :: k) [app-r]
(τ, Γ, (τ ′ �) :: k) 7→ (θξ, θΓ, θk) [app-out]

where θ = U(τ ′, τ → ξ), ξ fresh
(let x = e1 in e2, Γ, k) 7→ (e1, Γ, let x in e2 :: k) [let-def]

(τ, Γ, let x in e2 :: k) 7→ (e2, Γ[x : σ], let :: k) [let-body]
where σ = ∀α.{α/GΓ(τ)}τ, α fresh

(τ, Γ[x : σ], let :: k) 7→ (τ, Γ, k) [let-out]

GΓ(τ) = ftv(τ)− ftv(Γ) Generalization
I(∀α.τ) = {ξ/α}τ where ξ is fresh
I(τ) = τ

Generic Instantiation

Figure 4. Algorithm W Abstract Machine

U(τ, τ) = ε U(τ, ξ) = U(ξ, τ)
where τ is not a univariable

U(ξ, τ) = {τ/ξ} if ξ /∈ ftv(τ)
U(τ1 → τ2, τ3 → τ4) = U(θ(τ2), θ(τ4)) ◦ θ

where θ = U(τ1, τ3)

Figure 5. Unification

already appeared in Γ, i.e., ξ ∈ ftv(Γ). This is because if ξ did not
appear in Γ, it would have been generalized and replaced by a poly-
morphic bound type variable. Thus, at the point where it is added,
a let binding introduces no new univariables into the environment.
It also means that the first occurrence of a univariable in the envi-
ronment is always at a λ binding. These properties are obviously
preserved if a type substitution is applied to a type environment. So
we have the invariant (for Pure ML):

1. The first occurrence of a univariable in an environment is al-
ways at a λ binding.

Now let us consider the effect of a substitution on the rank of
a univariable in an environment. Consider a univariable ξ, an envi-
ronment Γ, and a type substitution θ. What is the relation between
R(ξ,Γ) and R(ξ, θΓ)? If ξ ∈ dom(θ), then ξ is eliminated by θ
(remember that all our substitutions are idempotent because of the
occurrence check), so R(ξ, θΓ) = ∞. But in this case, since θ is
applied uniformly to all components of the abstract machine, ξ is
eliminated everywhere, and its rank is no longer relevant since we
will never ask whether ξ can be generalized.

Next assume that ξ 6∈ dom(θ). Then applying θ to Γ will
not remove any occurrences of ξ, so the rank of ξ in Γ will not
increase, but it could decrease if ξ occurs in the range of θ and
new occurrences of ξ are added in θ(Γ) (including the case where
ξ 6∈ ftv(Γ) but ξ ∈ ftv(θ(Γ)). Hence

R(ξ, θ(Γ)) ≤ R(ξ,Γ) if ξ 6∈ dom(θ)

Thus, except for the case where a univariable is eliminated by a sub-
stitution, a substitution can only decrease the rank of a univariable
or leave it the same. This means that a substitution may “promote”

a univariable to an earlier binding and thus make it “less generaliz-
able”.

As we have defined it, computing the rank of a univariable
relative to an environment is no less expensive than computing
whether it occurs in the environment. But the main idea of the
ranked variable algorithms we will present below is that we can
avoid scanning the environment by making the rank an attribute of
the univariable and managing that attribute incrementally so that it
is always equal to the intrinsic rank defined above, relative to the
current environment in the machine state.

Since in theW machine for Pure ML, only the λ bindings count,
our first version of univariable ranking will assign ranks based on
the depth of λ nesting (i.e. counting only λ bindings). We will then
look at a variant for Pure ML that counts only let definien marks
(which demarcate the scopes of nested let definiens). When we
introduce references and the consequent requirement for the value
restriction, things become more complicated, because the invariant
that univariables first occur in λ bindings will no longer be the case,
and non-value let bindings will act like λ bindings.

4. λ-Depth Ranking
In Figs. 6 and 7, we modify the Pure ML inference machine by
adding ranks to the univariables. The rank associated with a uni-
variable is either a natural number or∞, and if a univariable occurs
in the current type environment its rank is meant to correspond to
the index of the earliest λ-binding in the environment in which it
occurs. A rank greater than the number of λ bindings in the cur-
rent environment will indicate that the univariable is generalizable,
i.e. its intrinsic rank is ∞.

For convenience, we add a new register to the machine states
containing the current λ nesting depth d. This register starts at 0 and
counts how many λ-abstractions we have passed through to reach
to the current control. Its value will always be equal to both the
number of λ-bindings in the current environment and the number
of λ frames in the context stack.

TheW machine rules are easily adapted to incorporate λ-depth
ranking, and we will call this new machineWλ. The new [λ-in] rule
increments the depth, introduces a fresh univariable whose initial
rank is the new λ nesting depth, and pushes a new λ binding onto
the environment. The [λ-out] rule now also decrements the depth.

We can categorize bindings in type environments according to
whether they are introduced by the [let-body] rule, in which case
the variable is bound to a polytype σ, or by the [λ-in] rule, in which
case the variable is bound to a monotype τ (and this distinction
is preserved under substitution). This distinction on bindings is
expressed in the definition of environments in Fig. 7.

As noted in the previous section, if a univariable occurs in an en-
vironment, the first binding it occurs in will always be a λ-binding,
and let-bindings play a secondary role. So we can modify the no-
tion of the occurrence index of a univariable ξ in an environment
Γ, which we called the intrinsic rank R(ξ,Γ), by counting only λ-
bindings from left to right when we calculate this index. The uni-
variable ranks in the Wλ machine are assigned and managed so
that they always correspond to the intrinsic rank determined by the
location of the univariable in the current environment (if any).

Note that because applying unification substitutions in [app-
out] can “promote” univariables to earlier λ-bindings, the first λ-
binding containing a univariable may not correspond to the pro-
gram point where it was introduced. A substitution that promotes
a univariable to an earlier binding must compensate for the change
in the intrinsic rank of the univariable by adjusting the explicit rank
of the univariable to reflect its new earliest occurrence in the envi-
ronment.

The L limit substitution defined in Fig. 8 performs this neces-
sary adjustment to univariable ranks. When a unification substitu-
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e ::= x | λx.e | e1 e2 | let x = e1 in e2 EXP
τ ::= ξd | τ → τ | α TYPE
d ::= 0 | 1 | 2 | . . . | ∞ Ranks
σ ::= ∀α.τ PTYPE

Figure 6. λ-Ranking Language

Γ ::= ∅ | Γ[x : τ ] | Γ[x : σ] Tyenv
f ::= λ | (� e) | (τ �) | let x in e | let Frames
k ::= • | f :: k Stack
c ::= e | τ Control
s ::= (c, Γ, d, k) States

Initial State s0 = (e, ∅, 0, •)

(x, Γ, d, k) 7→λ (I(Γ(x)), Γ, d, k) [var]
(λx.e, Γ, d, k) 7→λ (e, Γ[x : ξd+1], d + 1 [λ-in]

λ :: k)
(τ, Γ[x : τ ′], d, λ :: k) 7→λ (τ ′ → τ, Γ, d− 1, k) [λ-out]

(e1 e2, Γ, d, k) 7→λ (e1, Γ, d, (� e2) :: k) [app-l]
(τ, Γ, d, (� e2) :: k) 7→λ (e2, Γ, d, (τ �) :: k) [app-r]
(τ, Γ, d, (τ ′ �) :: k) 7→λ (θξ∞, θΓ, d, θk) [app-out]

θ = U(τ ′, τ → ξ∞)
(let x = e1 in e2, Γ, d, k) 7→λ (e1, Γ, d, let x in e2 :: k) [let-def]

(τ, Γ, d, let x in e2 :: k) 7→λ (e2, Γ[x : σ], d, let :: k) [let-body]
σ = ∀α.{α/Gd(τ)}τ where α is fresh

(τ, Γ[x : σ], d, let :: k) 7→λ (τ, Γ, d, k) [let-out]

Gd(τ) = {ξm ∈ ftv(τ) |m > d} Generalizable
I(∀α.τ) = {ξ∞/α}τ Generic Instantiation

I(τ) = τ

Figure 7. Algorithm W Machine extended with λ-depth Ranking
(Wλ)

U(τ, τ) = ε U(τ, ξm) = U(ξm, τ)
where τ is not a univariable

U(ξm, τ) = Lm(τ) ◦ {τ/ξm} if ξm /∈ ftv(τ)
U(τ1 → τ2, τ3 → τ4) = U(θ(τ2), θ(τ4)) ◦ θ

where θ = U(τ1, τ3)
Ld(τ) = {ξd/ξm | ξm ∈ ftv(τ) ∧m > d}

Figure 8. Unification with λ-rank Maintenance

tion maps a univariable ξ to a type τ , univariables occurring in τ
may be introduced to λ-bindings to the left of their original first
occurrences, if ξ occurs earlier in the environment. Thus, if the first
occurrence of ξ was to the left of the first occurrence of some uni-
variable φ ∈ ftv(τ), then after unification, the first occurrence of
φ is now where the first occurrence of ξ was before as shown in
Fig. 9. If the first occurrence of ξ was to the right of the first oc-
currence of φ, then the first occurrence of φ does not move after
unification as shown in Fig. 10.

As a simple example of this issue, consider the expression
λx.let y = λz.xz in . . .. The λ bindings for x and z produce an
environment Γ = [x : ξ1x][z : ξ2z ] for the typing of the application
xz. The typing of this application involves a unification producing
the substitution θ = ξ1x 7→ (ξ2z → ξ∞r ). But if θ is applied to the
typing environment it would produce Γ′ = [x : ξ2z → ξ∞r ][z : ξ2z ]
in which the ranks of the univariables in the x binding no longer
correspond to its index in the environment, which is 1. So an
additional rank limiting substitution is required to adjust the ranks
of ξz and ξr downward: (ξ2z 7→ ξ1z , ξ

∞
r 7→ ξ1r). When this is

applied we get a properly ranked environment Γ′ = [x : ξ1z →
ξ1r ][z : ξ1z ]. Now the adjusted rank of ξ1z will prevent the type of y,
namely ξ1z → ξ1z from being generalized at the let binding.

U(ξ1, . . . φ2 . . .)

[. . .]let[x : . . .ξ1. . .]λ [y : . . .φ2. . .]λ
λ-binding Index 1 2

(a) If ξ (a contextual variable) instantiates to y’s type, then φ (a local
variable) propagates into x’s λ-binding.

[. . .]let[x : . . .φ2. . .]λ [y : . . .φ2. . .]λ
λ-binding Index 1 2

(b) The rank of φ must now be limited to that of ξ because the first
occurrence of φ has shifted left, thus making it contextual.

[. . .]let[x : . . .φ1. . .]λ [y : . . .φ1. . .]λ
λ-binding Index 1 2

(c) After Applying the Limit Substitution

Figure 9. Limit Substitution (L) Example: Subscripts on bindings
indicate the kind of binding.

U(φ2, . . . ξ1 . . .)

[. . .]let[x : . . .ξ1. . .]λ [y : . . .φ2. . .]λ
λ-binding Index 1 2

(a) If φ instantiates to x’s type, then ξ propagates into y’s λ-binding.

[. . .]let[x : . . .ξ1. . .]λ [y : . . .ξ1. . .]λ
λ-binding Index 1 2

(b) ξ’s rank is fine because its first occurrence has not shifted. It
remains contextual.

Figure 10. Example of when the limit substitution is unnecessary

Definition 1 (Valid Machine States (VMS))
A machine state (c,Γ, d, k) is valid if it is reachable from some
valid initial machine state (e, ∅, 0, •) (i.e., (e, ∅, 0, •) 7→∗ (c,Γ, d, k)
where 7→ is the machine transition relation).

From this point on, a metavariable with a tilde (˜) on top denotes
the corresponding instance of that construct where the ranks of any
univariables that occur are erased or ignored.

Definition 2
|Γ| = the length of Γ, and similarly for |eΓ|.
Definition 3
D(Γ) = # λ bindings in Γ, and similarly for D(eΓ).

Definition 4
Γλ denotes the list of λ-bindings in Γ, and similarly for eΓλ.
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Definition 5 (Intrinsic Univariable Rank)

eR(ξ, ∅) = ∞eR(ξ, eΓ[x : eτ ]) = min( eR(ξ, eΓ),D(eΓ) + 1) if ξ ∈ ftv(eτ)
= ∞ otherwiseeR(ξ, eΓ[x : eσ]) = eR(ξ, eΓ)

This computes the index of the first λ-binding containing an
occurrence of a univariable, ignoring let-bindings. If a univariable
is not in the environment, it is assigned the intrinsic rank∞, which
ensures that such a univariable should be generalized because it is
always greater than any let expression’s finite λ-depth.

Definition 6
R(ξm,Γ) = eR(ξ, Er(Γ))
where Er erases the ranks of univariables in Γ.

By definition, type environments can be extended with more
bindings. We formally define the notion of extension:

Definition 7eΓ′ is an extension of eΓ if and only if there exists eΓ′′ such that eΓ′
is the concatenation of eΓ and eΓ′′ (in that order).

Notice that if a type variable occurs in a type environment,
then extension of that type environment does not change that type
variable’s leftmost occurrence:

Lemma 1 ( eR Invariant Under eΓ Extension)
If ξ ∈ ftv(eΓ) and eΓ′ is an extension of eΓ, then eR(ξ, eΓ′) =eR(ξ, eΓ).

Proof: By induction on the length of eΓ �

Because eR computes the first occurrence index for a univariable
in an environment, if a univariable does occur in the environmenteRwill return the same index for any extension of that environment.

By definition, eR counts the number of λ-bindings up to a
univariable’s first occurrence. Naturally, this number cannot ex-
ceed the total number of λ-bindings on eΓ. We observe this fact in
Lemma 2.

Lemma 2
If ξ ∈ ftv(eΓλ), then eR(ξ, eΓ) ≤ D(eΓ).

Proof: By induction on the length of eΓ �

We determined by construction that the rank of a univariable
that does not occur in the environment is∞. This is formally stated
in Lemma 3.

Lemma 3
If ξ /∈ ftv(eΓλ) then eR(ξ, eΓ) = ∞.

Proof: By induction on the structure of eΓ �

To formalize the notion of first occurrence of a univariable, we
appeal to Lemma 4.

Lemma 4
If ξm occurs in the n-th λ-binding in Γ (counting from the left) and
ξm occurs in no λ-binding to the left of that n-th λ-binding, then
R(ξm,Γ) = n.

Proof: By induction on the length of Γ and Lemma 3 �

We also make a simple observation about substitutions and
environments that simplifies the proofs in Lemma 5.

Lemma 5 (Substitution Range Preservation)
If τ ∈ rng Γ, then στ ∈ rng σΓ.

Proof: This follows from definition of type variable substitution
on type environments. �

Definition 8 (Properties for Wλ)
The following are invariant properties on any valid Wλ machine
state s = (c,Γ, d, k):

Prop1 ∀ξm ∈ ftv(Γ), R(ξm,Γ) = m
Prop2 ∀ξm ∈ ftv(c) such that m ≤ D(Γ), then ξm ∈ ftv(Γ)
Prop3 D(Γ) = # of λs on k
Prop4 ∀ξm ∈ ftv(k) such that m ≤ r where r is the number of λ

frames below the frame with the occurrence of ξm in the stack
k, ξm ∈ ftv(Γ)

Prop1 asserts that a univariable’s rank corresponds to the index
of the λ-binding containing the first occurrence of that univariable
in the environment. This is a precursor to Corollary 1 below that
provides a notion of completeness for the λ-ranking scheme. All
univariables in the environment must be given a low rank.

Prop2 says that all the “contextual” univariables occurring in the
control are bound in the environment. Contextual refers to having a
rank no greater than D(Γ). This specifically excludes univariables
that would run off the end of the environment at the current scope
because their ranks are too great, including univariables with rank
∞. Prop2 asserts that all low ranked univariables must be in the
environment. Therefore it provides a notion of the soundness of the
ranking scheme.

Prop3 tells us that the number of λ-bindings in the environment
corresponds to the λ-nesting depth. This simple observation is
necessary for establishing Prop1 when only λ-depth information
is available.

Prop4 is a rather subtle property. It ensures that the a modified
version of Prop2 holds for those univariables occurring on the
stack in (τ �) frames. Because the type τ of the operator is
in a sense “parallel” to the current operand expression that the
machine is working on, it may contain some seemingly low ranked
univariables (rank < current λ-depth) that are not in the current
environment for the operand. These univariables are not truly low
ranked because at the point when (τ �) was pushed onto the
stack, τ was in the control, so by Prop2 any univariables not in the
environment at that point had rank higher than the D(Γ′), where
Γ′ was the then-current environment. But D(Γ′) was also equal to
the number of λ frames on the stack before the (τ �) frame was
pushed. Once the machine pops all the frames sitting on top of the
(τ �) frame, the environment will once again have its original λ-
depth.

For example, in (λx.x)(λy.λz.z), before the machine reaches
the body of λz.z, λx.x is given the type ξ1 → ξ1. When typing
the body of λz.z, the λ-depth is 2. It seems that ξ1 has a low
rank. However, at the point we were just finished with λx.x and
when we pop out of the operand, the λ-depth is 0. Therefore ξ1 is
actually a high ranked univariable that we do not expect to find in
the environment when we get back to it.

We proceed by first showing that these properties are invariant
under the unification that results from [app-out].
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Lemma 6 (Invariants under unification)
For all Γ, if the properties from def. 8 hold for s = (τ,Γ, d, (τ ′ �) ::
k) ∈ VMS and θ = U(τ ′, τ → ψ∞) (where ψ∞ is fresh), then
the properties must also hold for s′ = (θψ∞, θΓ, d, θk).

Proof (sketch): This proof is by induction on sizes of τ ′ and the
other type argument of U . The instantiation case is the interesting
part of this proof. In that case, by definition of unification, θ =
U(φn, τ) = Ln(τ) ◦ {τ/φn}.

The interesting cases for Prop1(s
′) are illustrated in Figs. 10

and 9. In the first case, assume ξm ∈ ftv(θΓ) was not limited,
hence it must have a rank that is lower or equal to n. Because
φn was substituted away by θ, it must occur in Γ. By, Lemma 2,
n ≤ D(Γ). Thus, m ≤ D(Γ). By Prop2(s), ξm must occur in Γ.
By Prop1(s), R(ξm,Γ) = m. In the case where ξm was limited,
the first occurrence of ξm shifted left to the former first occurrence
of φn. Thus, it should also receive rank n. Lem. 4 helps establish
this.

For Prop2(s
′), the unlimited case is simple. The case where ξm

was limited is somewhat tricky. If the univariable to be instantiated
φn has a rank n > D(θΓ), the case is vacuous, so assume that
m ≤ D(θΓ). Note that by the definition of L, m = n. We first
have to show that φn must be in Γ. φn can come from τ , τ ′, or
ψ∞. The ψ∞ case is vacuous because ∞ > D(Γ). The τ case is
handled by Prop2(s). The τ ′ case takes a little more work because
Prop2(s) did not say anything about τ ′. This is the reason why
we need Prop4. Prop4(s) gives us what we need. Assuming that
φn ∈ ftv(Γ), it is straightforward to show that ξm ∈ ftv(Γ) with
the help of Lemma 5.

Prop3(s
′) is easily to establish because substitution does not

change the length of Γ or k. Prop4 is also relatively straightfor-
ward. �

The properties trivially hold for the initial states. Now we pro-
ceed to show that the properties are indeed invariant under all ma-
chine transition rules. This would establish that the properties are
invariants over all valid machine states.

Lemma 7 (Properties invariant over all machine transitions)
If the props. in def. 8 hold for s ∈ VMS and s 7→λ s′, then they
must hold for s′.

Proof (sketch): We need Prop3 to push through Prop1’s [λ-in]
case, thus showing that the ranks do measure λ nesting depth. This
fact combined with Lemma 3 establish that the ranks correspond
to the λ-binding index of the first occurrence (actually the only
occurrence) of the fresh univariable representing this λ’s parameter
type in the environment.

For the [λ-out], [let-body], and [let-out] cases, we use Lemma 1
to show Prop1. For [app-r], Prop4(s

′) simply inherits the property
from Prop2(s) because τ merely shifted from the control to the top
of the stack. Prop1 and Prop2 for the [app-out] case follow from
Lemma 6.

For Prop1 in the [let-body] case, we use Prop2’s prop. that we
assume holds before transitioning by [let-body] to show that any
univariable ξ in ftv(Γ[x : σ]) must also occur in ftv(Γ). That is to
say, first occurrences of univariables in environments are never in
let-bindings. We can then conclude by assumption and Lemma 1
that R(ξm,Γ[x : σ]) = m.

For Prop2, we note that ξm ∈ ftv(τ ′ → τ) in [λ-out] cannot
have a first occurrence in the last binding in Γ[x : τ ′] because
by assumption, m ≤ D(Γ). If this were not the case, then we
would be seeing unbound yet non-generic univariables after [λ-
out] transitions.

The rest of the cases are fairly straightforward case analyses
assuming that the properties holds before each transition rule. �

From Prop1, we can easily obtain a completeness corollary.

Corollary 1 (Ranking is Complete)
For all Γ from s = (c,Γ, d, k) ∈ VMS
ξm ∈ ftv(Γ) ⇒ m ≤ D(Γ)

Proof (sketch): By Prop1 from Lemma 7, R(ξm,Γ) = m. Since
D(Γ) = |Γλ|, m ≤ D(Γ) by definition of R and Lemma 2. �

We can put together Corollary 1 and Prop2 to establish that the
ranking corresponds to searching through the environment for all
valid machine states.

Lemma 8
For any (τ,Γ, d, k) ∈ VMS and ∀ξm ∈ ftv(Γ),
m ≤ d iff ξm ∈ ftv(Γ).

Proof:

⇒ : This direction follows from Prop2 of Lemma 7.

⇐ : This direction follows from Corollary 1. m ≤ D(Γ) = d

�

The generalizability criteria are equivalent. Consequently, we
always generalize the same set of univariables using the classical
and λ-ranking algorithms.

Lemma 9 (Equivalence of Generalizability Criteria)
If (τ,Γ, d, let x = � in e :: k) 7→ (e,Γ[x : σ], d, let :: k) where
σ = ∀α.{α/Gd(Γ)}τ , then Gd(Γ) = GΓ(Γ).

Proof: This proof falls out from the definitions of Gd and GΓ, and
Lemma 8. �

Finally, we put everything together. The classical algorithm W
and the λ-ranking algorithms are equivalent.

Theorem 1 (Equivalence to Classical Algorithm W)
(e, ∅, 0, •) 7→∗ (τ, ∅, 0, •) iff (e, ∅, •) 7→∗ (τ, ∅, •).

Proof: We only inspect the depth register in [let-body]. In all
other cases, the λ-ranking and classical machines are identical.
The depth register is only along for the ride. Because of Lemma 9,
the [let-body] behaviors are also identical. �

5. Let-Depth Ranking
The let-depth ranking scheme is similar to the λ-depth ranking ex-
cept for a few significant adjustments. We can reuse the language
and the same notation for ranks. The main observation that the let-
depth ranking relies on is that the locality of univariables at differ-
ent λ-depths is the same as long as we are in the same let definien’s
scope. In contrast, λ-ranks distinguish among λ’s at different λ-
nestings even though they may all be in the same let definien scope.
We have to be careful, though, because a let expression only ex-
tended the type environment when the type checker reaches the
body. At that point, generalization of the definien type would have
already occurred. So we cannot use let-bindings to derive a ranking
for determining generalization. We have to determine a rank be-
fore generalization occurs. So, we turn to another implicit structure
of the environment, the partitioning of bindings into contiguous
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λx.let a = λy1.λy2.let b =let c = •
in . . .

in . . .
in . . .

Environment at •: [x : ξ0][y1 : ζ1][y2 : φ1]

Figure 11. When we reach •, we pass into three let definiens but
added no let-bindings to the environment. The type of x is less
generalizable than that of the y’s. The type of the y’s should be
generalizable at the same point.

let a = λx.let b = . . .
in let c = . . .

in (λy.y)•
in . . .

Environment at •: [x : ξ1][b : σb][c : σc][y : ζ1]

Figure 12. When we reach •, we are in no let definiens but added
two let-bindings to the environment. The types of x and y are both
generalizable at the let a.

blocks according to the definien scope. We can extend the machine
introduced in Wλ to make this let definien partitioning manifest.

We cannot naively replace λ’s with let’s in the development
from the previous section to get a working let-ranking scheme.
In particular, λ’s were simple. We only traverse a λ-abstraction
in one pass. First, we extend the environment with the bound λ-
variable. Then we traverse the body of the λ using this extended
environment. Once we are done, we pop out of the λ never to
revisit it. In contrast, for let’s, we have to first traverse the definien
without extending the environment, pop out of the definien, extend
the environment with the generalized definien type, and only then
traverse the body of the let with this extended environment. We
have to increment the depth when we pass into a definien, as for
instance in the expression λx.let y = x in . . ., where we need to
prevent the type of x from being generalized where y is bound. On
the other hand, the body should have the depth that held before
we entered into the definien. This permits the type of λy.y to
generalize in let x = let . . . in λy.y in . . .. The complication
is that there is no simple connection between the number of let-
bindings in the environment and the number of let definiens we
have passed into (but have not finished typing). Figs. 11 and 12
give examples of this problem. In the environments for the two
examples, we label the univariables with the let definien depth at
the point of introduction. Although in Fig. 11 ξ has a lower let
definien depth than ζ and φ, there is nothing in the environment to
demarcate the two groups of bindings. In Fig.12, ξ and ζ have the
same depth and yet they are separated by two let-bindings.

To overcome this problem, we rank by the number of let
definien letd markers in an environment instead of λ-bindings.
We want to identify contiguous blocks of λ-bindings in the envi-
ronment that are within the same let definien scope. Thus, every
time we pass into a let definien, we mark the (rightmost) end of the
environment with a letd marker. This marker tells us that any λ to
left of the marker will be less generalizable than any λ that will be
to the right. We extend the definition of Γ with these letd marks in
Fig. 14. The letd marked versions of the environments in Figs. 11
and 12 would be [x : ξ0][letd][y1 : ζ1][y2 : φ1][letd][letd] and
[letd][x : ξ1][b : σb][c : σc][y : ζ1] respectively.

Fig. 13 shows both the λ and let ranking of the following
program:

λs.let x = λt.. . .
in let y = λu. . . .

λ

λ

λλ

let

let

let

d b

1

2

λ

22

3

λ

λ

λλ

let

let

let

d b

0

1

λ

01

1

Lambda Rank Let Rank

Figure 13. Comparison of λ and let ranks in expression structure

in λv. let z = λw. . . .
in . . .

The left branch of each let node represents its definien (d) and
the right branch its body (b). The dashed lines indicate where
we increment the rank. In this example, there are no let definiens
nested in another let definien, hence generalizability at a let definien
is determined solely by whether a univariable is local to that let
definien or outside of any let definien. Univariables at that let
definien could not have been introduced in another let definien
because they would have already been generalized at that earlier
(to the left) let definien or we would have not reached that let
definien yet. Notice that the λ ranking method increments the rank
much more frequently. In fact, the distinction between ranks on the
right spine of the program does not make a difference with respect
to generalizability. For example, the types of s and v are in the
same scope of generalization (i.e., they are both outside of all let
definiens). The let ranking method only increments the rank at the
let definiens where the rank distinction may make a difference with
respect to generalizability.

Definition 9 (Let Depth)
Dlet(eΓ) = # of letd markers in eΓ
Definition 10 (Univariable Let-Rank)

eRlet(ξ, ∅) = ∞eRlet(ξ, eΓ[x : eτ ]) = min( eRlet(ξ, eΓ),m)

where m = Dlet(eΓ) if ξ ∈ ftv(eτ),
otherwise m = ∞eRlet(ξ

m, eΓ[x : eσ]) = eRlet(ξ
m, eΓ)

Definition 11
Rlet(ξ

m,Γ) = eRlet(ξ, Er(Γ))
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Γ ::= Γ[letd] | . . . Γ with let definien marks
s = (c, Γ, d, k) states

Initial Machine State s0 = (e, ∅, 0, •)

(x, Γ, d, k) 7→L (I(Γ(x)), Γ, d, k) [wl-var]
(λx.e, Γ, d, k) 7→L (e, Γ[x : ξd], d [wl-λ-in]

λ :: k)
(τ, Γ[x : τ ′], d, λ :: k) 7→L (τ ′ → τ, Γ, d, k) [wl-λ-out]

(e1 e2, Γ, d, k) 7→L (e1, Γ, d, (� e2) :: k) [wl-app-l]
(τ, Γ, d, (� e2) :: k) 7→L (e2, Γ, d, (τ �) :: k) [wl-app-r]
(τ, Γ, d, (τ ′ �) :: k) 7→L (θξ, θΓ, d, θk) [wl-app-out]

θ = U(τ ′, τ → ξ∞)
(let x = e1 in e2,Γ, d, k)

7→L (e1, Γ[letd], d + 1, let x in e2 :: k)
[wl-let-def]

(τ, Γ[letd], d, let x in e2 :: k)

7→L (e2, Γ[x : σ], d− 1, let :: k)
[wl-let-body]

σ = ∀α.{α/G let
d (τ)}τ, α is fresh

(τ, Γ[x : σ], d, let :: k) 7→L (τ, Γ, d, k) [wl-let-out]

G let
d (τ) = {ξm ∈ ftv(τ) |m ≥ d}

Generic instantiation I, language, stack register k, and frames f remain the
same as in the Wλ machine in Fig. 7.

Figure 14. Algorithm W Machine with let-Ranking (WL)

The univariable rank no longer indicates the exact λ-binding
that has the first occurrence in the environment. Instead, the rank
is the index of the nearest letd marker to the left of the λ-binding
with the first occurrence. We can call this the left bounding letd
marker for the first occurrence. Multiple, distinct univariables can
share the same left bounding letd mark. These univariables have the
same generalizability. As before, generic univariables are rank ∞.
Univariables that are bound outside of any let definiens are rank 0.
If the environment was [x : ξ][letd1][y1 : φ1][y2φ2][letd2][z : ζ],
then ξ, φ1, φ2, and ζ would be ranked 0, 1, 1, and 2 respectively.
The left bounding letd’s for the φ’s and ζ are letd1 and letd2 re-
spectively. Also, similar to the Wλ rank function eR, eRlet still ig-
nores let-bindings when computing the rank. As we have shown
before, let-bindings have nothing to do with rank and generaliz-
ability.

Fig. 14 gives an abstract machine for a type inference algorithm
that uses let-ranking. The [wl-λ-in] and [wl-λ-out] rules do change
the depth counter. This is now the responsibility of the [wl-let-def]
and [wl-let-body] rules that introduce and eliminate the let x in e
definien binder frame on the stack respectively.

We can reuse the definition of unification from the λ-ranking
system because it turns out that we can use L limit substitution
with no changes except for using the let-ranks in place of the λ-
ranks. Since instantiation during unification still shifts around the
first occurrence in exactly the same way it did before, the limit
substitution is still necessary in those cases where a univariable of
low rank is instantiated with a type with univariables of high rank.
Because it is easier for univariables to share the same let-rank than
to share λ-ranks, we do not expect the limit substitution to apply as
often as it did with the λ-ranking.

The [wl-let-body] rule decrements the let-depth, pops the
let x in e2 frame off the stack and the letd frame off the envi-
ronment, and pushes a let onto the stack. When type checking the
body of a let-expression, that let will introduce no additional poly-
morphism because it already generalized the types for the definien.
Thus, the [wl-let-body] pops out from the definien’s scope of gen-
eralization. This is why [wl-let-body] decrements the let depth. In
contrast to Wλ, the type environment is augmented but the depth
is decremented. The let frame on the stack is a reminder to pop off
this new let-binding on the environment.

As in Wλ, we generalize univariables of rank greater than the
depth at the point of generalization where we have popped out of
the definien (and thus decremented the depth). Any univariables
that we introduced inside the scope of the definien must have rank
greater than or equal to the index of the letd mark we just popped
off. Rémy’s let-ranking scheme generalizes only those univariables
that have rank exactly equal to the current depth [13]. This is due
to a difference between how his and our systems rank generic
univariables. His system ranks generic univariables with the current
depth instead of ∞.

Many of the lemmas about the construction of eR hold for eRlet.

Lemma 10 (Rank is ∞ if not in Γ)
If ξ /∈ ftv(eΓλ), then eRlet(ξ, eΓ) = ∞.

Proof (sketch): By straightforward induction on eΓ �

Lemma 11
If ξm occurs in a λ-binding in Γ that is left bounded by the nth letd
mark and ξm occurs in no λ-binding to the left of that letd, then
Rlet(ξ

m,Γ) = n.

Proof (sketch): By induction on Γ and lem. 10 �

The properties also carry over with minimal changes.

Definition 12 (Properties on WL Machine States)
The following are the properties on valid WL machine states
(c,Γ, d, k):

Prop1 For all ξm ∈ ftv(Γ). R(ξm,Γ) = m
Prop2 For all ξm ∈ ftv(c) ∪ ftv(k) such that m ≤ Dlet(Γ),

ξm ∈ ftv(Γ)
Prop3 Dlet(Γ) = # of let x in e’s (let definien frames) on k
Prop4 For all ξm ∈ ftv(k) such thatm ≤ r where r is the number

of let x in e frames up to the frame with the occurrence of ξm

on the stack k, ξm ∈ ftv(Γ).

Lemma 12 (Properties Invariant Under Unification)
If the def. 12 hold for machine state valid WL machine state
(τ,Γ, d, k) and θ = U(τ ′, τ → ζ∞) and τ ′ occurs in k and ζ
is fresh, then those properties hold for (θc,Γ, d, k).

Proof (sketch): This proof is very similar to that of Lemma 6.
As the example in Fig. 15 shows, the limited univariable case also
plays out as it did for Wλ. The difference is that we look for left
bounding letd marks for λ-bindings with first occurrences instead
of the λ-bindings themselves. �

Again, the properties hold trivially for the initial WL states,
hence we only have to show that they hold under all the transition
rules.

Lemma 13 (Properties Are Invariant For WL)
For all valid WL machine states s, if the def. 12 properties hold for
s and s 7→L s

′, then the properties must hold for s′.

Proof (sketch): This proof is similar to lem. 7. Lemma 12 pro-
vides the proof for the [wl-app-out] case. The two proofs differ
in that some of the work for the [λ-out] case is shifted to the [wl-
let-body] since now it does the rank decrementing. The intuition is
that the environment and the stack are synchronized. Furthermore,
letd and let x in e (let definien frames) partition the environment
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letd λ . . .λξd . . . letd λ . . . λφm

letd mark #
d m

(a) Instantiating ξd to φm

letd λ . . .λφm. . . letd λ . . . λφm

letd mark #
d m

(b) φm now has a bad rank. The first occurrence of φm is left
bounded by the dth let.

letd λ . . .λφd . . . letd λ . . . λφd

letd mark #
d m

(c) Limited rank of φ to d

Figure 15. The limit substitution for unification instantiation
works similar to Wλ

and stack respectively into the definien scopes that determine gen-
eralization. �

Having shown that the properties are invariants under WL, we
can proceed to show that the generalizability criteria are equal at
the point of generalization.

Lemma 14 (Equivalence of Generalizability Criteria)
If (τ,Γ[letd], d, let x in e :: k) 7→L (e,Γ[x : σ], d − 1, let :: k)
where σ = ∀α.{α/Gd−1(Γ)}τ , then Gd−1(Γ) = GΓ(Γ).

Proof (sketch): This goes through similar to how the analogous
Wλ lemma goes through. �

We can now wrap up by showing theWL to be equivalent to the
classical machine.

Theorem 2 (Equivalence of WL Machine to Classical W Machine)
(e, ∅, 0, •) 7→∗

L (τ, ∅, 0, •) iff (e, ∅, 0, •) 7→∗
W (τ, ∅, 0, •)

Proof (sketch): Except for the [let-body] rule and let depths that
are just carried around in the rest of the machine, the WL machine
is identical to the classicalW machine. Lemma 14 shows that even
the [wl-let-body] and [let-body] rules are equivalent. �

6. The Value Restriction
The previous sections have considered only a pure object language.
In this section, we introduce references into the object language,
which complicates inference. Using Algorithm W without mod-
ification on a language with references admits the possibility of
unsound generalization. The case in point is given in example 1.
Although ref nil has a seemingly unconstrained type ξ list ref , ξ
cannot be generalized because there is only one ref cell, which can
only have one monomorphic type.

Example 1
let x = ref nil
in (x := cons unit nil; hd(!x) 3)

To eliminate this unsoundness, we introduce the value restric-
tion, a particularly simple solution to type checking imperative pro-
grams. The tradeoff is that some perfectly sound pure programs no

longer type check under the value restriction. In particular, this pre-
cludes returning polymorphic data structures [3]. The value restric-
tion eliminates the need for the usually heavy type machinery nec-
essary to prevent generalization of only the imperative univariables.
An early approach, Tofte’s imperative variables [17], revealed the
internal use of state in types and thus did not provide implemen-
tation abstraction. Wright showed that the value restriction did not
unduly limit expressiveness in practice [18]. Since then, the revised
version of the Standard ML language (SML 97) adopted the value
restriction in place of the earlier, more complex mechanisms for
inference with imperative type variables, and production compilers
such as SML/NJ have implemented it.

In Fig. 16, we introduce references and the standard imperative
primitives into the language. All the notation is taken from Standard
ML. We distinguish between primitive operators and types by sans-
serif and bold face respectively. Thus, ref is the operator and ref
is the type. We also add the conventional list type, list primitives
(cons and nil), and unit to the language to make it more convenient
to construct examples that use two easily distinguishable types.

Fig. 17 introduces an extension of the W abstract machine that
directly implements the value restriction. Wright’s value restriction
distinguished value let’s and non-value let’s, a distinction reminis-
cent of Leroy’s call-by-name and call-by-value let’s [6] albeit in
a much more restrictive form. Our abstract machine also distin-
guishes between the two syntactic forms of let by having two sets
of let-rules, one for the value let’s and the other for the non-value
let’s. The abstract machine treats value let’s the same as the pure
language let-ranking (WL) machine did. To distinguish non-value
let definiens, we add a new stack frame of the form letn x in e.
The rules [letv-def] and [letn-def] push on a value definien frame
let x in e and a non-value definien letn x in e frame respectively
when entering the definien of the respective kind of let. After we
get a type for the definien, we only generalize this type if we see
a normal (value) let x in e frame on top of the stack as per rule
[letv-body]. Otherwise, we see a letn x in e and therefore do not
generalize the definien type when adding a new binding for this
definien on the environment in the [letn-body] rule. In example 1,
[letn-def] will push into the outer let and [letn-body] will add the
appropriate binding to the environment without generalizing ξ in
the type of x.

Note that non-value let-bindings may contain first occurrences
of univariables. In this sense, non-value let-bindings are the same
as λ-bindings in the environment. In example 2, if the type of
the definien x is ξ list ref , then ξ only appears in the binding
introduced the non-value let in the environment. Consequently, we
do not distinguish between these two kinds of bindings. Both λ’s
and non-value let’s may put bindings that restrict generalization
into the environment. They are for all intents and purposes, the
same kind of binding. When the abstract machine reaches the inner
let in example 2, the letn binding in the environment contains the
univariable ξ ([x : ξ list ref ]), hence ξ would not be erroneously
generalized for the type of the definien y, ξ list ref . In order to
pop off the monomorphic bindings introduced by [letn-body], we
use letn frames. The letn frames serve the same role as λ frames
except in the service of non-value let’s.

Example 2
let x = ref nil
in let y = x

in (y := cons unit nil)(y := [λx.x])
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t ::= x | λx.t | t1 t2 | let x = t1 in t2 | ref | ! Terms
| t1 := t2 | cons | nil | unit

τ ::= α | ξ | τ → τ | τ list | τ ref | unit Types
v ::= x | λx.t | ref | ! | unit | cons | nil Values
n ::= t1 t2 | let x = t1 in t2 | t1 := t2 Non-values

Figure 16. Reference ML

Machine Stack Frames
f ::= let x in e Value let definien

| letn x in e Non-value let definien
| letn Non-value let body
| . . . Frames from classical W machine

Value Restriction Let Rules
(let x = v in e, Γ, k) 7→V (v, Γ, let x in e :: k) [letv-def]
(τ, Γ, let x in e :: k) 7→V (e, Γ[x : σ], let :: k) [letv-body]

σ = ∀α.{α/GΓ(τ)}τ where α is fresh
(let x = n in e′, Γ, k) 7→V (n, Γ, letn x in e′ :: k) [letn-def]
(τ, Γ, letn x in e′ :: k) 7→V (e′, Γ[x : τ ], letn :: k) [letn-body]
(τ, Γ[x : τ ′], letn :: k) 7→V (τ, Γ, k) [letn-out]

Imperative Features
(ref e, Γ, k) 7→V (e, Γ, ref :: k) [ref-in]

(τ, Γ, ref :: k) 7→V (τ ref, Γ, k) [ref-out]
(!e, Γ, k) 7→V (e, Γ, ! :: k) [deref-in]

(τ, Γ, ! :: k) 7→V (θξ, θΓ, θk) [deref-out]
ξ is fresh θ = U(τ, ξ ref)

(x := e, Γ, k) 7→V (e, Γ, x := � :: k) [set-in]
(τ, Γ, x := � :: k) 7→V (unit, θΓ, θk) [set-out]

θ = U(Γ(x), τ ref)

List Rules
(nil, Γ, k) 7→V (ξ list, Γ, k) [nil]

ξ is fresh
(cons, Γ, k) 7→V (ξ list → ξ → ξ list, Γ, k) [cons]

ξ is fresh

All the rules other than [let-def] and [let-body] carry over from the classi-
cal W machine (Fig. 4).
Figure 17. Classical W with References and Value Restriction

t ::= x | λx.t | t1 t2 | let x = t1 in t2 | ref | ! Terms
| t1 := t2 | cons | nil | unit

τ ::= α | ξd | τ → τ | τ list | τ ref | unit Types
v ::= x | λx.t | ref | ! | unit | cons | nil Values
n ::= t1 t2 | let x = t1 in t2 | t1 := t2 Non-values

Figure 18. Reference ML with Ranked Univariables

7. Value Restriction with λ-Ranking
We can also adapt the efficient ranking schemes to work with the
value restriction. Because both λ and non-value let-introduced
bindings may restrict generalization, our notion of nesting depth
must count them both. Fortunately, because we can introduce
monomorphic bindings into the environment for non-value let’s,
we can count them as λ-bindings and therefore reuse D and R
from theWλ machine. The basic idea is to treat non-value let bod-
ies as we do λ binding bodies in the foregoing machines and to
distinguish non-value let definiens so that we do not confuse them
with value let definiens whose types do generalize. However, there
is one last complication in that non-value let definiens may leak out
univariables that might be unsoundly generalized in the body. We
deal with this situation by limiting the ranks of non-value definien
types.

Value Restriction Let Rules
(let x = v in e, Γ, d, k) 7→λV (v, Γ, d, let x in e :: k) [λv-letv-def]
(τ, Γ, d, let x in e :: k) 7→λV (e, Γ[x : σ], d, let :: k) [λv-letv-body]

σ = ∀α.{α/Gd(τ)}τ where α is fresh
(let x = n in e′, Γ, d, k) 7→λV (n, Γ, d, letn x in e′ :: k) [λv-letn-def]
(τ, Γ, d, letn x in e :: k) 7→λV (e, Γ′[x : τ ′], d′, letn :: k′) [λv-letn-body]

d′ = d + 1 θ = Ld(τ) Γ′ = θ(Γ) τ ′ = θ(τ)
k′ = θk

(τ, Γ[x : τ ′], d, letn :: k) 7→λV (τ, Γ, d− 1, k) [λv-letn-out]

Imperative Features
(ref e, Γ, d, k) 7→λV (e, Γ, d, ref :: k) [λv-ref-in]

(τ, Γ, d, ref :: k) 7→λV (τ ref, Γ, d, k) [λv-ref-out]
(!e, Γ, d, k) 7→λV (e, Γ, d, ! :: k) [λv-deref-in]

(τ, Γ, d, ! :: k) 7→λV (θξ∞, θΓ, d, θk) [λv-deref-out]
ξ∞ is fresh θ = U(τ, ξ∞ ref)

(x := e, Γ, d, k) 7→λV (e, Γ, d, x := � :: k) [λv-set-in]
(τ, Γ, d, x := � :: k) 7→λV (unit, θΓ, d, θk) [λv-set-out]

θ = U(Γ(x), τ ref)

List Rules
(nil, Γ, d, k) 7→λV (ξ∞ list, Γ, d, k) [λv-nil]

ξ∞ is fresh
(cons, Γ,d, k)

7→λV (ξ∞ list → ξ∞ → ξ∞ list, Γ, d, k)
[λv-cons]

ξ∞ is fresh

All the other rules, machine state, initial state, registers, Gd, and I carry
over from Wλ.

Figure 19. λ-Ranking W with References and Value Restriction
(WλV)

λ-ranking does nothing special with value let’s. The rules look
the same as in the classical W with value restriction except now
they carry around the λ depth. In contrast, there is a slight com-
plication for non-value let’s. If we leave high ranked univariables
in the non-value let definien alone, we admit the possibility that
such contextual univariables may be generalized at a later point.
In example 2, although the we did not generalize the type of x,
ξ list ref , at the outer let, a non-value let, it may erroneously
generalize at the inner let, a value let. The [λv-letn-body] avoids
this unsound generalization by limiting the ranks in the non-value
definien types. This measure ensures that no high rank univariable
would be generalized in the body of the non-value let. For exam-
ple 2, the [λv-letn-body] rule would limit the rank of ξ to 0 where
the type of x is ξ1 list ref , even though [λv-letn-def] previously
incremented the λ-depth to 1 . When the machine reaches the in-
ner let, the rank of ξ is too low to generalize. Using the intuition
that non-value let x = e1 in e2 act like expressions of the form
(λx.e2)e1, [λv-let-body] increments the depth when entering the
body (and extending the environment with a monomorphic (λ-)
binding). The [λv-let-out] decrements the depth because it pops
off that monomorphic binding from the environment when popping
out from the body.

In the remaining rules, we simply add the depth register to the
analogous classical W with value restriction rules. In [λv-deref-
out] and [λv-nil], we introduce fresh generic univariables that
should therefore be ranked ∞.

To account for the non-value let-introduced bindings in the
environment, Prop3 and Prop4 must count both λ and letn frames
on the stack because nesting depth now includes both. Def. 13
shows the Prop3 and Prop4 updated to reflect this. This is another
reason why we need [λv-letn-body] to introduce letn frames as
distinct from regular let frames.
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Definition 13 (Properties for Value Restriction Machines)
Prop1 ∀ξm ∈ ftv(Γ), R(ξm,Γ) = m

Prop2 ∀ξm ∈ ftv(c) such that m ≤ D(Γ), ξm ∈ ftv(Γ)
Prop3 D(Γ) =# of λ’s and letn’s on k
Prop4 ∀ξm ∈ ftv(k) such that m ≤ r where r is the number of λ

and letn frames up to the frame with the occurrence of ξm on
the stack k, ξm ∈ ftv(Γ).

We now have three cases where we use unification ([λv-deref-
out], [λv-set-out], and the app-out rule), hence the properties must
be invariant under all of them.

Lemma 15 (Invariants under unification)
If the properties hold for s = (τ,Γ, d, (τ ′ �) :: k), s =
(τ,Γ, d, ! :: k), or s = (τ,Γ, d, x := � :: k) ∈ VMS and
θ = U(τ ′, τ → ψ∞), U(τ, ψ∞), or U(Γ(x), τ ref) respectively,
then they must also hold for s′ = (θψ∞, θΓ, d, θk) for the first
two cases or s′ = (unit, θΓ, d, θk).

Proof (sketch): The definition of U has not changed at all. The
other cases for s and θ are simple adaptations of the proof for
lem. 6. They are actually simpler than the general [app-out] case.

�

Next, we need to show that the properties are invariant under the
new rules, especially the non-value let rules.

Lemma 16 (Properties invariant over all WλV rules)
If the properties hold forWλV state s ∈ VMS and s 7→λV s

′, then
they hold for s′.

Proof (sketch): Again, the [app-out] case is handled by lem. 15.
All rules that were present in Wλ are handled in the same way.

�

At this point, we have everything we need to prove the analogs
of Corollary 1, lemmas 8, and 9. The proofs are identical to those
in Wλ. We are now ready to connect WλV to WV.

Theorem 3 (Equivalence of WλV and WV)
(t, ∅, 0, •) 7→∗

λV (τ, ∅, 0, •) iff (t, ∅, •) 7→∗
V (τ, ∅, •)

Proof (sketch): This proof proceeds in the same way as thm. 1.
WλV and WV are identical except for the generalization criteria
and innocuous carrying around of ranks. �

8. Value Restriction with Let-Ranking
We can carry over much of the WL machine, so Fig. 20 only lists
the new or changed rules in the W with value restriction and let-
ranking machine, WLV. The rules for let expressions are now also
responsible for letd marking. However, it turns out that only the
rules for value let’s do the letd marking just as they did in WL

and the rules for non-value let’s are responsible for the definien
type limitation as they were in WλV. Thus, for value let’s, the
let depth is incremented only while inside the definien ([lv-letv-
def]) and it is decremented once we start the body ([lv-letv-body])
just as it is in WL. Non-value let’s, however, do not increment
the let-depth because non-value let definiens introduce no scope
of generalization. A non-value let x = n in e is treated in the same
way as would (λx.e)n. The [lv-letn-def] rule enters the definien
after pushes on a letn x in e frame onto the stack. Once we get
a type for the definien, the [lv-letn-body] pops off the letn x in e
in order to start the body under the environment extended with the
limited but monomorphic definien type. We still need to limit the
definien type ranks for the same reasons as in the previous section.

(let x = v in e, Γ, d, k)
7→LV (v, Γ[letd], d + 1, let x in e :: k) [lv-letv-def]

(τ, Γ[letd], d, let x in e :: k)
7→LV (e, Γ[x : σ], d− 1, let :: k) [lv-letv-body]
σ = ∀α.{α/Gd−1(τ)}τ where α is fresh

(let x = n in e, Γ, d, k)
7→LV (n, Γ, d, letn x in e :: k) [lv-letn-def]

(τ, Γ, d, letn x in e :: k)
7→LV (e, (θΓ)[x : θ(τ)], d, letn :: θk) [lv-letn-body]
θ = Ld(τ)

(τ, Γ[x : τ ′], d, letn :: k)
7→LV (τ, Γ, d, k) [lv-letn-out]

All imperative features, list rules, and generic instantiation I carry over
from the WλV, Fig. 19. All the remaining rules, machine state, and initial
state carry over from WL, Fig. 14.

Figure 20. Let-RankingW with References and Value Restriction
(WLV)

Non-value let’s also do not add letd definien marks to the
environment. Everything in the non-value let definien is no more
generalizable than anything outside of that non-value let. Thus, the
depth ranking here refers to the value let nesting depth only. Non-
value let’s are ignored just as λ’s are with respect to determining
the depth. So, unlike in WλV, [lv-letn-body] and [lv-letn-out] do
not change the current depth. The [lv-letn-out] is relegated to the
small role of popping off the monomorphic definien binding once
we are done with the body.

Because non-value let’s do not affect the let-ranking scheme,
we can reuse the properties in def. 12 (WL) and consequently all
the lemmas for the WL machine. The new cases to the proofs are
straightforward because everything, including the non-value let’s
can be encoded in terms of the WL language.

Theorem 4 (Equivalence of WLV and WV)
(e, ∅, 0, •) 7→∗

LV (τ, ∅, 0, •) iff (e, ∅, 0, •) 7→∗
V (τ, ∅, 0, •).

Proof (sketch): This proof follows the form of the proof for WL.
The new cases are straightforward. �

9. Related Work
Most of the literature on AlgorithmW and the value restriction fall
into two categories. The first category focuses on general frame-
works for understanding W and the value restriction. Rémy [13]
formalizes a ranked variable system using ranks based on let-depth.
Pottier and Rémy [12] offer a model implementation using the let-
ranking technique. As mentioned earlier, Rémy’s let-ranking dif-
fers somewhat from ours when it instantiates generic univariables
to the current let-depth rather than rank ∞. He also proves a prin-
cipal typing result. The work relies on a complex theory based on
unificands, thus providing a very general framework that can be
extended to other equational theories. It does not address the value
restriction. It is not clear whether this development is equivalent
to our WL abstract machine, but we conjecture that they are sim-
ilar. In contrast to Rémy’s work, this paper is concerned primar-
ily about the engineering of inference algorithms using ranked type
variables. This is reflected by the presentations of the machines that
more closely follow implementations.

Pottier [11] and Skalka and Pottier [15] describe a variant of the
Hindley-Milner type system (HM(X)) with the value restriction.
They prove its soundness. Wright provides empirical evidence that
the value restriction is practical [18]. His work relies on the pure
Algorithm W for inference after translating non-value let’s away.
Thus, implicitly, soundness for the value restriction is obtained
by treating non-value let’s as equivalent to corresponding beta-

13



redexes, where the bindings become λ bindings (e.g., let x =
n1 in e2 translates to (λx.e2)n1). Pottier, Skalka and Pottier, and
Wright do not address efficient algorithms for inference.

The second category focuses on expanding the set of well-typed
programs by either refining the value restriction or by developing
a type discipline for imperative type variables, neither of which
are considered in this paper. Garrigue uses a subtyping relation
to relax the value restriction and thereby expand the set of safe,
well-typed programs while simultaneously preserving the imple-
mentation abstraction property of the value restriction [3]. His tech-
nique types some programs involving the handling of polymorphic
data that would not type check under the ordinary value restriction.
Tofte provides a soundness proof for the imperative type system
of SML 90 [17]. The soundness of the value restriction is the lim-
iting case of Tofte’s proof where all type variables are imperative
type variables. There are also a number of other contributions that
offer more powerful and complex alternatives to the value restric-
tion [6, 7, 16]. These treatments do not address using type variable
ranks to make generalization more efficient.

10. Future Work
Both the WλV and WLV machines use a rank-limiting coercion on
the univariables of the let-definien type to prevent unsound general-
ization of definien univariables in the body. However, for efficiency,
we can avoid computing and applying this limit substitution if we
introduced generic univariables with more precise initial ranks.

We believe that there is an alternative to this rank coercion ap-
proach. Another version of the value restriction machines can ini-
tialize generic type variables to the current depth rather than in-
finity. This setup would essentially pre-limit the ranks of generic
univariables in a non-value let definien. In particular, we observe
that the only requirement on the rank given to a generic univariable
is that the rank must be greater than or equal to Dlet(Γ). In fact,
Dlet(Γ) is a perfectly sensible rank for generic univariables. The
[var] rule can use a modified generic instantiation that assigns the
current let depth as the rank for the new generic univariables. Sim-
ilarly, the [nil] rule introduces a univariable ranked at the current
depth. This technique may be related to Rémy’s variant of the let-
ranking scheme. We plan to investigate these alternative machines
and their connection to Rémy’s technique.

The abstract machine approach to formalizing inference can
also be extended to other type systems and inference approaches.
Local type inference offers partial inference for a variant of System
F≤ [10]. One alternative approach to inference for the Hindley-
Milner type system is Lee and Yi’s formalization of the folklore
top-down alternative toW , algorithmM [5]. The abstract machine
approach may offer some further insight into these inference algo-
rithms.

11. Conclusion
We provide a direct and accessible approach to formalizing the var-
ious versions of type inference with ranked variables. This particu-
lar formalism is also very close to implementation. UsingWLV as a
reference, we implemented a let-ranked machine for type checking
programs under value restriction semantics. This implementation
can be easily adapted to follow the other machines. This formalism
also exposes some interesting properties of the type environment
that we rely upon for use with the various ranking techniques.

Using this abstract machine type inference formalism, we have
proved these systems correct with respect to the original Algorithm
W (for a pure version of ML), and with respect to a version
with the value restriction for the more realistic impure ML. From
this experience, we believe that the formulation of type inference

algorithms as abstract machines is an effective basis for reasoning
about such systems and relating them to each other.
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