
CMSC 22610
Winter 2011

Implementation
of

Computer Languages I

Project 3
February 13, 2011

MinML typechecker
Due: March 1, 2011

1 Introduction

The third part of the project is to implement a typechecker for MinML. The typechecker is respon-
sible for checking that a given program is statically correct. The typechecker takes a parse tree (as
produced by your parser) as input and produces a typed abstract syntax tree (AST). The AST in-
cludes information about the types and binding sites of variables. We will provide a sample scanner
and parser, but you may also use your solution from Part 2.

The bulk of this document is a formal specification of the typing rules for MinML. The type
system for MinML is essentially a stripped down version of the SML type system and supports
polymorphism with Hindley-Milner type inference. For a discussion of how to implement Hindley-
Milner type inference, see Handout 5.

2 Syntactic restrictions

There are a number of syntactic restrictions that your typechecker should enforce. These restrictions
could be specified as part of the typing rules below, but it is easier to specify them separately.

1. The parameter type variables in a type or datatype definition must have distinct names.

2. The constructors in a datatype definition must have distinct names.

3. The variables in a pattern must have distinct names.

4. The functions in a recursive binding must have distinct names.

5. There should be no free names (either type or value). That is, every use of a name (in var,
con, tyv, tyc) should be in the scope of a declaration of that name.

3 Core syntax

The typing rules are given for a core of the concrete grammar, which is given in Figure 1. This gram-
mar omits specification of parenthization, associativity, and precedence. It also treats infix operators
as applications. lit ranges over integer and string constants (literals). Nullary type constructors are
applied to null-tuples to form types.



prog ::= exp
| topdcl; prog

topdcl ::= tydcl
| valdcl

tydcl ::= type tyc (tyv1, . . . , tyvk)= ty
| datatype tyc (tyv1, . . . , tyvk)= condcl1 | · · · | condcln

ty ::= tyv
| tyc (ty1, . . . , tyk)
| ty1->ty2
| ty1* · · ·*tyn

condcl ::= con
| con(ty)

valdcl ::= val pat = exp
| fun fb1 and · · · and fbn

fb ::= var pat = exp

exp ::= let valdcl in exp end
| case exp of match end
| if exp1 then exp2 else exp3
| fn pat => exp
| exp1 exp2
| exp1 == exp2
| ( exp1, . . ., expn )
| exp1; exp2
| var
| con
| lit

match ::= match1 |match2

| pat => exp

pat ::= con pat
| ( pat1, . . ., patn )
| var
| con
| lit

Figure 1: Core MinML syntax

2



τ ::= α type variable
| T k (τ1, . . . , τk) tycon application

σ ::= ∀α1, . . . , αn.τ type scheme

Figure 2: MinML semantic types

4 MinML types

In the MinML typing rules, we distinguish between syntactic types as they appear in the program
text and semantic types that are inferred for expressions and patterns and bound to variables and
data constructors in type environments.

MinML’s semantic types are terms formed from type variables and type constructors (referred
to as tycons). Where it is not obvious or understood, a superscript is used to specify the arity of
a tycon. Tycons include nullary type constructors such as Int and Bool, a binary tycon Fun for
function types, and a family of product (tuple) tycons {Prodn | n ≥ 1}. Informally, we use the
notation τ1 → τ2 for Fun(τ1, τ2), and τ1 × . . .× τn for Prodn(τ1, ldots, τn). The abstract syntax
of (semantic) types is given in Figure 2.

Since data constructors and variables can be polymorphic, we also define type schemes, also
known as polymorphic types or polytypes. We say that a type τ is an instance of a scheme σ =
∀α1, . . . , αn.τ

′ if there exists a substitution S mapping type variables to types with domain {α1, . . . , αn},
such that τ = S(τ ′). We write τ ≺ σ when τ is an instance of σ. Type schemes appear only in the
bindings of variables and constructors in type environments.

There are three sorts of tycons: primitives like Int and Fun, tycons defined by datatype dec-
larations like List, and derived tycons introduced by type declarations. Primitive and datatype
tycons are atomic, and each has its own unique identity (which is distinct from the name of the
tycons – multiple datatype tycons can have the same name in the same program). Together these
constitute the set ATOMCON.

Derived tycons can be represented as type functions λ(α1, . . . , αn).τ . The abstract syntax of
type functions and tycons is given by

TYFUN ∈ TYVAR∗ × TY type functions
TYCON ∈ ATOMCON ∪ TYFUN type constructors

Applications of derived tycons in TYFUN can by eliminated by β-reduction, and we will per-
form this reduction in Rule (8) below to insure that the type expressions that occur during type
checking are in normal form, where all tycons are in ATOMCON.

5 Identifiers and environments

The typechecking rules of MinML use a number of environments to track binding information.
These environments are

TE ∈ TYC → TYCON tycon environment
TVE ∈ TYV → TYVAR bound type variables
VE ∈ VAR → TYSCHEME value-identifier environment

3



TE,VE ` prog ⇒ τ typechecking a program

TE,VE ` topdcl ⇒ TE′,VE′ typechecking a top-level declaration

TE,VE ` tydcl ⇒ TE′,VE′ typechecking a type declaration

TE,TVE ` ty ⇒ τ translating a type

TE,TVE, (~α, τ) ` condcl ⇒ VE typechecking a data-constructor definitions

VE ` valdcl ⇒ VE′ typechecking a value declaration

VE ` fb ⇒ VE′ typechecking a function binding

VE ` exp ⇒ τ typechecking a expression

VE ` match ⇒ (τ, τ ′) typechecking a match rule

VE ` pat ⇒ (VE, τ) typechecking a pattern

Figure 3: MinML judgment forms

where TYVAR is the set of type variables (α), TYC is the set of syntactic tycon identifiers (capi-
talized), TYCON is the set of type constructors (T k), and TYSCHEME is the set of type schemes
(σ).

We define the extension of a finite map (environment) E by another environment E′ as

(E ± E′)(a) =
{
E′(a) when a ∈ dom(E′)
E(a) when a 6∈ dom(E′)

6 Typing rules

The typing rules (or judgments) for MinML provide both a specification for static correctness of
MinML programs. The general form of a rule is

Context ` Term ⇒ Type

which can be read as “Term has Type in Context .” The context usually consists of one or more
environments, but may have other information, while the “Type” can be one or more types and or
environments. Figure 3 summarizes the judgement forms that we use for typing MinML.

6.1 Programs

The first rule for programs just threads the environment from left to right.

TE,VE ` topdcl ⇒ VE′,TE′ TE′,VE′ ` prog ⇒ τ

TE,VE ` topdcl; prog ⇒ τ
(1)

When a program is just an expression, its type is that of the expression.

VE ` exp ⇒ τ

TE,VE ` exp ⇒ τ
(2)

4



6.2 Top-level declarations

Checking top-level declarations requires appealing to the appropriate declaration judgment form.

TE,VE ` tydcl ⇒ TE′,VE′

TE,VE ` tydcl ⇒ TE′,VE′
(3)

VE ` valdcl ⇒ VE′

TE,VE ` valdcl ⇒ TE′,VE′
(4)

6.3 Type declarations

TVE = {tyvi 7→ αi | 1 ≤ i ≤ k and αi are fresh}
TE,TVE ` ty ⇒ τ TE′ = TE±{tyc 7→ (〈α1, . . . , αk〉, τ)}

TE,VE ` type (tyv1, . . . , tyvk) tyc= ty ⇒ TE′,VE
(5)

The rule for datatype definitions is somewhat complicated. We introduce a fresh atomic tycon Tk

representing the new datatype, and bind it to the datatype name in an extended type environment
TE′. We check each of the constructor declarations in a context that includes the type parameters
variables and result type; these checks yield single constructor environments that are merged to
produce the final constructor environment.

TVE = {tyvi 7→ αi | 1 ≤ i ≤ k and αi fresh} Tk ∈ ATOMCON (Tk fresh)
TE′ = TE±{tyc 7→ Tk} D = (〈α1, . . . , αk〉,Tk)

TE′,TVE,D ` condcl i ⇒ VEi (1 ≤ i ≤ n) VE′ = VE±VE1 ± · · · ±VEn

TE,VE ` datatype tyc (tyv1, . . . , tyvk)= condcl1 | · · · | condcln ⇒ TE′,VE′
(6)

6.4 Types

The typing rules for types check types for well-formedness and translate the concrete syntax of
types into the abstract syntax. The judgment form is

TE,TVE ` Type ⇒ τ

which should be read as: in the environments TE,TVE, the type expression Type is well-formed
and translates to the abstract type τ .

Typechecking a type variable replaces it with its definition.

TVE(tyv) = α

TE,TVE ` tyv⇒ α
(7)

There are two rules for type-constructor application, depending on whether the type ID names a type
definition or a datatype (or abstract type). For type definitions, we substitute the type arguments for
the type parameters to produces a new type:

TE(tyc) = λ(α1, . . . , αk).τ
TE,TVE ` ty1 ⇒ τ1 · · · TE,TVE ` tyk ⇒ τk

TE,TVE ` tyc(ty1, . . . , tyk)⇒ [τ1/α1, . . . , τk/αk]τ
(8)

5



For applicatons of datatypes and primitive tycons, we translate the arguments and map the tyc
identifier to the associated type constructor.

TE(tyc) = T k TE,TVE ` ty i ⇒ τi (1 ≤ i ≤ k)
TE,TVE ` tyc (ty1, . . . , tyk)⇒ T k (τ1, . . . , τk)

(9)

Translating a function type requires translating the two sides of the arrow.

TE,TVE ` ty1 ⇒ τ1 TE,TVE ` ty2 ⇒ τ2
TE,TVE ` ty1->ty2 ⇒ τ1 → τ2

(10)

Translating a product type requires translating the component types.

TE,TVE ` ty1 ⇒ τ1 · · · TE,TVE ` tyn ⇒ τn
TE,TVE ` ty1* · · ·*tyn ⇒ τ1 × · · · × τn

(11)

6.5 Data-constructor definitions

The typing rules for a nullary data-constructor specification is

σ = ∀α1, . . . , αk.T
k(α1, . . . , αk)

TE,TVE, (〈α1, . . . , αk〉,Tk) ` con⇒ {con 7→ σ}
(12)

and the rule for a data-constructor function is

TE,TVE ` ty ⇒ τ ′ σ = ∀α1, . . . , αk.τ
′ → Tk (α1, . . . , αk)

TE,TVE, (〈α1, . . . , αk〉,Tk) ` con(ty)⇒ {con 7→ σ}
(13)

6.6 Value declarations

For a value binding, we check the pattern, which yields a variable environment and a type, and we
check the r.h.s. expression using the original environment. If the types match, we extend the value
environment with the bindings from the pattern, but with its types generalized with respect to the
original environment.

VE ` pat ⇒ (VE′, τ) VE ` exp ⇒ τ

VE ` val pat = exp ⇒ VE± Clos(VE, VE′)
(14)

Function bindings are tricky for two reasons: they are mutually recursive and we are allowed to
generalize their types. We use the auxiliary function NameOf to extract the function name from a
function binding.

VE′ = VE± {fi 7→ τfi | fi = NameOf(fbi)}
VE′ ` fbi ⇒ τfi for 1 ≤ i ≤ n

VE′′ = VE± {fi 7→ σfi | σfi = Clos(VE, τfi)}
VE ` fun fb1 and · · · and fbn ⇒ VE′′

(15)

In these rules, we use the Clos function. Clos(VE, τ) polymorphically quantifies any type variables
that are free in τ , but not free in the bindings in VE. When applied to an environment, as in
Clos(VE, VE′), it similarly generalizes all the the types in the range of that the environment VE′.

6



6.7 Function bindings

Typechecking a function binding (fb = f pat = exp) requires checking the parameter pattern and then
using its bindings to check the function body.

VE ` pat ⇒ (VE′, τ) VE±VE′ ` exp ⇒ τ ′

VE ` var pat = exp ⇒ τ → τ ′
(16)

6.8 Expressions

Checking a let expression requires checking the value declaration and then using the enriched
environment to check the expression.

VE ` valdcl ⇒ VE′ VE′ ` exp ⇒ τ

VE ` let valdcl in exp end⇒ τ
(17)

Checking a case requires checking the type of the argument against the match.

VE ` exp ⇒ τ VE ` match ⇒ (τ, τ ′)

VE ` case exp of match end⇒ τ ′
(18)

The condition of an if expression must have boolean type and the types of the arms must agree.

VE ` exp1 ⇒ Bool0 VE ` exp2 ⇒ τ VE ` exp3 ⇒ τ

VE ` if exp1 then exp2 else exp3 ⇒ τ
(19)

Function application requires checking the argument against the function’s type.

VE ` exp1 ⇒ τ → τ ′ VE ` exp2 ⇒ τ

VE ` exp1 exp2 ⇒ τ ′
(20)

Typechecking the equality operator, which we use as a representative of the other relational opera-
tors, requires a special rule, because equality is an ad hoc polymorphic operator, also known as an
overloaded operator. The operators == and <> are defined for Int, Bool, and Str, while the other
relational operators are only defined for Int and Str.

VE ` exp1 ⇒ τ VE ` exp2 ⇒ τ τ ∈ {Bool0, Int0,Str0}
VE ` exp1 == exp2 ⇒ Bool0

(21)

The type of an empty tuple expression is Unit0.

VE ` ()⇒ Unit0
(22)

The type of a tuple expression is the tuple of the types of its sub-expressions.

VE ` expi ⇒ τi for 1 ≤ i ≤ n
VE ` ( exp1, . . ., expn )⇒ τ1 × · · · × τn

(23)

Expression sequencing ignores the type of the l.h.s. expression

VE ` exp1 ⇒ τ1 VE ` exp2 ⇒ τ2
VE ` exp1; exp2 ⇒ τ2

(24)

7



The type of a value identifier is determined by its binding in the value environment. Note that this
rule covers constants, data constructors, and variables.

VE(var) = σ τ ≺ σ
VE ` var⇒ τ

(25)

We use the auxiliary function TypeOf to map literals to their types (i.e., Int0 and Str0).

TypeOf(lit) = τ

VE ` lit⇒ τ
(26)

Function expressions are typed by typing the parameter pattern and then typing the body expression
in the base environment (VE) augmented with parameter variable bindings (VE′).

VE ` pat ⇒ (VE′, τ) VE±VE′ ` exp ⇒ τ ′

VE ` fn pat => exp ⇒ τ → τ ′
(27)

6.9 Match rules

All of the matches in a case must have the same argument and result type, which is reflected in the
rule for sequencing matches.

VE ` match1 ⇒ (τ, τ ′) VE ` match2 ⇒ (τ, τ ′)

VE ` match1 |match2 ⇒ (τ, τ ′)
(28)

Checking an match rule requires checking the r.h.s. expression in an environment enriched by the
bindings from the l.h.s. pattern (i.e. the same process as for function expressions).

VE ` pat ⇒ (VE′, τ) VE±VE′ ` exp ⇒ τ ′

VE ` pat => exp ⇒ (τ, τ ′)
(29)

6.10 Patterns

Typechecking a pattern yields a new environment, which assigns types to the variables bound in the
pattern, and the type of values matched by the pattern.

Constructor application requires matching the argument pattern against the constructor’s type.

VE(con) = σ τ → τ ′ ≺ σ VE ` pat ⇒ (VE′, τ)

VE ` con pat ⇒ (VE′, τ ′)
(30)

Non-empty tuple patterns require merging the bindings from each sub-pattern.

VE ` pat i ⇒ (VEi, τi) (1 ≤ i ≤ n) VE′ = VE1 ± · · · ±VEn

VE ` ( pat1, . . ., patn )⇒ (VE′, τ1 × · · · × τn)
(31)

Value identifiers introduce new bindings. Not that this rule is nondeterministic, since the type
assigned to the pattern variable can be any arbitrary τ .

VE ` var⇒ ({var 7→ τ}, τ)
(32)

8



Nullary constructors can be typed with any instance of the type assigned to them by the current
environment.

VE(con) = σ τ ≺ σ
VE ` con⇒ ({}, τ)

(33)

Literals are checked using the same TypeOf function as for expressions.

TypeOf(lit) = τ

VE ` lit⇒ ({}, τ)
(34)

7 Predefined types and operators

Your typechecker will typecheck programs in the context of an initial basis TE0,VE0. This basis
is defined as follows:

TE0 =


Bool 7→ Bool0

Int 7→ Int0

list 7→ list(1)

Str 7→ Str0

Unit 7→ Unit0


The initial value environment defines the types of the operator symbols and some additional func-
tions.

VE0 =



False 7→ Bool0

True 7→ Bool0

Unit 7→ Unit0

Nil 7→ ∀α.List1 (α)
Cons 7→ ∀α.(α× List1 (α))→ List1 (α)
<= 7→ (Int0 × Int0)→ Bool0

< 7→ (Int0 × Int0)→ Bool0

@ 7→ ∀α.(List1 (α)× List1 (α))→ List1 (α)
+ 7→ (Int0 × Int0)→ Int0

- 7→ (Int0 × Int0)→ Int0

* 7→ (Int0 × Int0)→ Int0

div 7→ (Int0 × Int0)→ Int0

mod 7→ (Int0 × Int0)→ Int0

˜ 7→ Int0 → Int0

ˆ 7→ Str0 × Str0 → Str0

fail 7→ ∀α.Str0 → α
print 7→ Str0 → Unit0


Note that we have omitted some of the relational operators for brevity here, but they should also be
included in the initial environment. We have also added two special functions, fail and print
that have side effects.

8 Derived forms

Some forms in the concrete syntax are defined in terms of a simple translation. This section de-
scribes these translations.

9



The parsing syntax allows multiple value bindings in a let expression. These can be translated
into nested lets by repeated application of the following rule:

let valdcl1 valdcl2 in exp end = let valdcl1 in

let valdcl2 in exp end

end

The operators && and || are translated to if expressions as follows:

exp1 && exp2 = if exp1 then exp2 else false

exp1 || exp2 = if exp1 then true else exp2

The null-tuple () is translated to the constructor Unit of the predefined datatype Unit.

9 Discussion

These typing or elaboration rules are used to form typing derivations for expressions, patterns,
declarations, and programs. The rules are nondeterministic, because at various points (Rules 15,
25, 30, 32, 33) we are allowed to pull a type (or an instantiation of a polytype) out of our hat. So a
given expression may have many different typings that can be derived by these rules. For instance,
(fn x => x) has types an infinite number of typings, including Int0 → Int0 and Bool0 → Bool0.

The problem we face is to implement a type checking algorithm that chooses the best typiing,
in some sense. Our notion of the best typing is a principal typing, meaning a typing that is the most
general possible; every other typing can be obtained by specializing (or instantiating) the principal
typing. Milner in 1978 described an algorithm for finding this principal typing, called Algorithm
W. We will discuss Algorithm W in Handout 5.

10 Requirements

10.1 Errors

Your typechecker should implement the above type system and report reasonable error messages.
Errors that you should catch include violations of the syntactic restrictions in Section 2, unbound
identifiers, and any type errors.

10.2 Submission

We will set up a project3 directory in your phoenixforge repository, containing the reference lexer
and parser implementations, and the syntax tree definitions in syntax.sml. You should use this
repository to hold the source for your project. We will check out your project3 code at 11pm on
Tuesday, March 1st, so make sure that you have committed your final version before then.

11 Document history

10


