
CMSC 22610
Winter 2011

Implementation
of

Computer Languages I

Project 2
January 20, 2011

MinML parser
Due: February 7, 2011

1 Introduction

Your second assignment is to implement a parser for MinML. You may either use ML-Yacc or ML-
Antlr to generate your parser from an specification. ML-Yacc is described in Chapter 3 of Appel’s
book and there is a link to the manual on the course web page. ML-Antler is a new tool that supports
LL(k) parsing. Its manual is also available from the course web page. The actions of this parser will
construct a parse tree representation for an MinML program. We have provided an ML-Lex based
scanner and will also provide the definition of the parse-tree representation. You may also choose
to use your own scanner from Project 1.

2 The MinML grammar

The concrete syntax of MinML is specified by the grammar given in Figures 1 and 2.

There are four classes of identifiers: vid for value identifiers (variables), cid for data constructor
identifiers, tyv for type variables, and tyc for type constructors (including type constants). The
identifier classes vid and tyv consist of alphanumeric identifiers starting with a lower-case letter,
while cid and tyc range over alphanumeric identifier starting with an upper-case letter.

As written, this grammar is ambiguous. To make this grammar unambiguous, the precedence of
operators must be specified. The precedence of the binary operators are (from weakest to strongest):

||
&&

== <> < <= > >=
@
+ -

* / %

All binary operators are left associative except “@” (string concatenation) which is right associative.
The next highest precedence is function application, which associates to the left. Here are some
examples:

a + b * c + d ≡ (a + (b * c)) + d
f a @ b @ " ≡ (f a) @ (b @ "")
hd l x y ≡ ((hd l) x) y

Prog
::= (TopDecl ;)∗ Exp

TopDecl
::= type tyc TypeParamsopt = Type
| datatype tyc TypeParamsopt = ConsDecl (| ConsDecl)∗

| ValueDecl

TypeParams
::= tyv
| (tyv (, tyv)∗)

Type
::= Type -> Type
| AtomicType (* AtomicType)∗

AtomicType
::= tyv
| tyc ((Type (, Type)∗))opt

| (Type)

ConsDecl
::= cid ((Type))opt

ValueDecl
::= val TuplePat = Exp
| fun FunDef (and FunDef)∗

FunDef
::= vid TuplePat = Exp

Figure 1: The concrete syntax of MinML (A)

2

Const
::= num
| str
| cid

Pat
::= Const
| cid TuplePat
| TuplePat

TuplePat
::= AtomicPat
| (AtomicPat (, AtomicPat)∗)

AtomicPat
::= vid
| _

Match
::= Pat => Exp

Exp
::= vid
| Const
| Exp || Exp
| Exp && Exp
| Exp == Exp
| Exp <> Exp
| Exp < Exp
| Exp <= Exp
| Exp > Exp
| Exp >= Exp
| Exp @ Exp
| Exp + Exp
| Exp - Exp
| Exp * Exp
| Exp / Exp
| Exp % Exp
| ˜ Exp
| Exp Exp
| (Exp (, Exp)∗)
| (Exp (; Exp)∗)
| if Exp then Exp else Exp
| let ValueDecl+ in Exp (; Exp)∗ end
| case Exp of Match (| Match)∗ end
| fn vid => Exp

Figure 2: The concrete syntax of MinML (B)

3

3 Requirements

Your implementation should consist of the following five files:

parser.cm — a CM sources file for compiling your project.

parser.sml — An SML source file containing the definition a structure Parser, that defines a
function

val parseFile : string -> Syntax.program

where Syntax.program is the type of program parse trees. This function should open the
named source file, parse it, and return the resulting syntax tree.

symbol.sml — An provided SML file containing a module Symbol that defines the symbol
type used for identifiers in syntax trees.

syntax.sml — An provided SML file containing a module Syntax that defines the syntax tree
representation of MinML programs. This representation is to be produced by the parser.

minml.grm — An ml-yacc parser specification file for parsing MinML programs. The actions of
this parser should construct syntax trees (i.e., values of type Syntax.program).

minml.lex — An ml-lex specification file for lexing MinML. This file can be found in the direc-
tory solutions/project1/lexer3 in your project repository.

We have set up a directory project2 for each student in their phoenixforge svn repository, and
will seed the project with the files mentioned above. You should use this repository to hold the
source for your project. We will collect the projects at 11pm on Tuesday, Februay 8th from the
SVN repositories, so make sure that you have committed your final version before then.

4

