
CMSC 22610
Winter 2011

Implementation
of

Computer Languages I

Project 1
January 6, 2011

MinML lexer
Due: January 21, 2011

1 Introduction

Your first assignment is to implement a lexer (or scanner) for MinML, which will convert an input
stream of characters into a stream of tokens. While such programs are often best written using a
lexer generator (e.g., ML-Lex or Flex), for this assignment you will write a scanner from scratch.

2 MinML lexical conventions

MinML has four classes of token: identifiers, delimiters and operators, numbers, and string literals.
Tokens can be separated by whitespace and/or comments.

Identifers can be any string of letters, digits, underscores, and quote marks, beginning with a
letter. Identifiers are used to denote type constructors, type variables, data constructors, and value
variables. Identifiers are case-sensitive (e.g., foo is different from Foo). Type constructor and data
constructor identifiers must begin with a capital letter, and type variable and value variables must
begin with a lower-case letter.

The following identifiers are reserved as keywords:

and case datatype end else
fun fn if in let
of then type val

MinML also has a collection of delimiters and operators, which are the following:

() == <> <= < >= >
˜ + - * / % || &&
@ = => | -> , ; :

Numbers in MinML are integers and their literals are written using decimal notation (without a
sign).

String literals are delimited by matching double quotes and can contain the following C-like
escape sequences:

\a — bell (ASCII code 7)
\b — backspace (ASCII code 8)
\f — form feed (ASCII code 12)
\n — newline (ASCII code 10)
\r — carriage return (ASCII code 13)
\t — horizontal tab (ASCII code 8)
\v — vertical tab (ASCII code 11)
\\ — backslash
\" — quotation mark

A character in a string literal may also be specified by its numerical value using the escape sequence
‘\ddd,’ where ddd is a sequence of three decimal digits. Strings in MinML may contain any 8-bit
value, including embedded zeros, which can be specified as ‘\000.’

Comments start anywhere outside a string with “(*” and are terminated with a matching “*)”.
As in SML, comments may be nested.

Whitespace is any non-empty sequence of spaces (ASCII code 32), horizontal or vertical tabs,
form feeds, newlines, or carriage returns. Any other non-printable character should be treated as an
error.

3 Requirements

Your implementation should include (at least) the following two modules:

structure Token
structure MinMLLexer : MinML_LEXER

The signature of the MinMLLexer module is

signature MinML_LEXER =
sig
val lexer : ((char, ’a) StringCvt.reader)

-> (MinMLTokens.token, ’a) StringCvt.reader
end

The StringCvt.reader type is defined in the SML Basis Library as follows:

type (’item, ’strm) reader = ’strm -> (’item * ’strm) option

A reader is a function that takes a stream and returns a pair of the next item and the rest of the stream
(it returns NONE when the end of the stream is reached). Thus, lexer is a function that takes a
character reader and returns a token reader. Notice that the lexer function is polymorphic in the
type of the character stream being analyzed. It takes the character reader for the character stream as
an argument; this corresponds to the charRdr component of the CHAR STREAM signature in the
LexerFn functor for Fun.

The definition of the Token module will be as follows:

2

structure Token =
struct

datatype token
= IDU of string (* identifier, initial upper case *)
| IDL of string (* identifier, initial lower case *)
| INT of int (* positive integer literal *)
| STR of string (* string literal *)
| NEG (* integer negation, ˜ *)
| PLUS | MINUS (* additive operators (+, -) *)
| TIMES | DIV | MOD (* multiplicative operators (*, /, %) *)
| EQUAL | NOTEQUAL | LESS | GREATER | LESSEQ | GREATEREQ

(* relational operators (==, <>, <, >, <=, >=) *)
| CONCAT (* string concat (@) *)
| AND | OR (* boolean operators (&&, ||) *)
| FN | DARROW (* function expression keywords (fn, =>) *)
| LET | IN | EQ | VAL | FUN | END (* let, in, =, val, fun, end *)

(* declaration keywords and punctuation *)
| IF | THEN | ELSE (* conditional expr keywords (if, then, else) *)
| CASE | OF | BAR (* case expressions (case, of, |) *)
| TYPE | DATATYPE (* type declarations (type, datatype) *)
| TARROW (* function type arrow (->) *)
| LPAR | RPAR (* left and right parentheses ("(", ")") *)
| COMMA | COLON | SEMI (* punctuation (",", ":", ";") *)

end (* structure Token *)

The tokens correspond to the various keywords, delimiters, operators, and literals. The IDU
tokens are initial upper case alphanumeric identifiers representing type constructors and data con-
structors. The IDL tokens are initial lower case alphanumeric identifiers representing type variables
and value variables. Either form of identifier token carries a string representation of the identifier.

The INT and STRING tokens carry the value of the literal.

4 Document History

[1/13/2011] Revised definition of operators and delimiters, and provided a revised version of the
Token structure.

[1/14/2011] Removed TRUE and FALSE from token constructors. The boolean constants True
and False are just instances of the IDU token class.

3

