CS281 Spring 2011: Homework 3

Due Friday, April 29th – in class

1. (10 points)

Informally but clearly describe a Nondeterministic Turing machine – multitape if you like – that accepts the following language [Try to take advantage of nondeterminism to avoid iteration and save time in the nondeterministic sense. That is, prefer to have your NTM branch a lot, while each branch is short.]:

The language of all strings of the form $w_1 \# w_2 \# \dots \# w_n$, for any n, such that each w_i is a string of 0's and 1's, and for some j, w_j is the integer j in binary.

2. (10 points)

Consider the nondeterministic Turing machine

$$M = (\{q_0, q_1, q_2, q_f\}, \{0, 1\}, \{0, 1, B\}, \delta, q_0, B, \{q_f\})$$

Informally but clearly describe the language L(M) if δ consists of the following sets of rules: $\delta(q_0,0)=\{(q_0,1,R),(q_1,1,R)\};\delta(q_1,1)=\{(q_2,0,L)\};\delta(q_2,1)=\{(q_0,1,R)\};\delta(q_1,B)=\{(q_f,B,R)\}.$

3. (10+10 = 20 points)

State (with justification) whether the recursive languages and the RE languages are closed under the following operations. You may give informal but clear constructions to show closure.

- a) Concatenation
- b) Kleene Star¹ operation.

4. (15 points)

We know by Rice's theorem that none of the following problems are decidable. However, are they recursively enumerable, or non-RE?

- a) Does L(M) contain at least two strings?
- b) Is L(M) infinite?
- c) Is L(M) a context free language? ²
- d) Is $L(M) = (L(M))^R$?

5. (10 points)

Let L be the language consisting of pairs of TM codes plus an integer, (M_1, M_2, k) , such that $L(M_1) \cap L(M_2)$ contains at least k strings. Show that L is RE, but not recursive.

Given a language L, the Kleene star of L is the language $L^* = \bigcup_{n \in \mathbb{N}} L^n$ where $\forall n > 0, L^n$

is the language consisting of concatenations of n elements of L and $L^0 = \{\Lambda\}$, Λ being the empty string.

²Optional, try if you know what a CFL is, it will not be graded

6. (15 points)

Show that the following questions are decidable:

- a) The set L of codes for TM's M such that, when started with the blank tape will eventually write some nonblank symbol on its tape. Hint: If M has m states, consider the first m transitions that it makes.
- b) The set L of codes for TM's that never make a move left on any input.
- c) The set L of pairs (M, w) such that TM M, started with input w, never scans any tape cell more than once.