
Object Adapter Pattern

Structural Pattern

Intent
 To allow objects to work together that

have otherwise incompatible
interfaces

 To convert the interface of an Object
to another that the client expects*

 Also known as a Wrapper

Description

Example

class Customer{
void setRestaurantData(String address, String city, String state, String zip){

// do some calculation
}

} – Standard customer

interface CustomerAdapter{
void setRestaurantData(String lat, String lng);

} - Certain customers give us different geocoded addresses.
 - Allows us to save to our database for later retrieval

 - Create a new object, and tailor the parameters to fit into existing structure

class CustomerAdapterImpl implements CustomerAdapter{
private Customer customer = new Customer();
public void setRestaurantData(String lat, String lng){

// calculate latitude and longitude
// return address, city, state, zip
customer.setAddress(address, city, state, zip);

}
}

Advantages and Disadvantages
 Advantage: Adapter can add

functionality to many Adaptees.
CustomerAdapter can be more
abstract and adapter more than just
customer object.

 Disadvantage: Harder to override
Adaptee behavior. Customer object
behavior can’t be changed without
subclassing it.

	Object Adapter Pattern
	Intent
	Description
	Example
	Advantages and Disadvantages

