
STATE PATTERN
Jonathan Ozik

CSPP 51023, Winter 2010

* Venetian (i.e., (city-)State) Slide Theme

PATTERN PURPOSE

Intent (GoF*):
Allow an object to alter its behavior when its internal state
changes. The object will appear to change its class.

Localizes and partitions state based behaviors.
Avoid unwieldy multipart conditional statements.
State transitions are explicit.
Structure clarifies intent.

Change behavior at runtime.
Similar to Strategy pattern but different purpose.

* Design Patterns, Gamma, et. al., Addison Wesley, 1995.

PATTERN STRUCTURE
* Adapted from Design Patterns, Gamma, et. al., Addison Wesley, 1995, pg. 306.

PARTICIPANTS

Context
Contains an instance of State.
Clients call Context after (optionally) initializing it with a
particular ConcreteState.

State
Abstract class defining behaviors interface.

ConcreteState subclasses
Classes implementing state based behavior.

ADDITIONAL KEY IDEAS

State transitions can be handled either by the Context
(centralized) or the ConcreteState subclasses
(decentralized).

If the State objects have no instance variables, they can
be shared (Flyweight).

State objects are usually Singletons.

Creation
Create and destroy as necessary (unknown states, change
infrequently)
Create ahead of time and store (rapid changes).

ADDITIONAL POINT REGARDING
DYNAMIC LANGUAGES

Certain OO languages allow runtime class
modifications.

Groovy: via MOP, create behaviors “on the fly”

These languages can support the State pattern in
different ways.

DEMOS

Simple Example

Less Simple Example

file://localhost/Users/jozik/Dropbox/Curio%20Stuff/Curio%20Projects/CSPPMasters.curio/__Curio%20Asset%20Library.cclib/LessSimpleExample.groovy
file://localhost/Users/jozik/Dropbox/Curio%20Stuff/Curio%20Projects/CSPPMasters.curio/__Curio%20Asset%20Library.cclib/LessSimpleExample.groovy

