
Abstract Factory Pattern

Jiaxin Wang
CSPP 51023
Winter 2010

Intent

• “Provide an interface for creating families of
related or dependent objects without
specifying their concrete classes.”

– provide a simple creational interface for a complex
family of classes

• Client does not have to know any of those details.

– avoid naming concrete classes
• Clients use abstract creational interfaces and abstract

product interfaces. Concrete classes can be changed
without affecting clients.

Applicability

• Use the Abstract Factory Pattern if:

– clients need to be ignorant of how servers are created,
composed, and represented.

– clients need to operate with one of several families of
products

– a family of products must be used together, not mixed with
products of other families

– provide a library and want to show just the interface, not
implementation of the library components.

Collaborators

• Usually only one ConcreteFactory instance is used for
an activation, matched to a specific application context.
It builds a specific product family for client use -- the
client doesn’t care which family is used -- it simply
needs the services appropriate for the current context.

• The client may use the AbstractFactory interface to
initiate creation, or some other agent may use the
AbstractFactory on the client’s behalf.

• The factory returns, to its clients, specific product
instances bound to the product interface. This is what
clients use for all access to the instances.

Consequences

• The Abstract Factory Pattern has the following benefits:

– It isolates concrete classes from the client.
• You use the Abstract Factory to control the classes of objects the client

creates.
• Product names are isolated in the implementation of the Concrete

Factory, clients use the instances through their abstract interfaces.

– Exchanging defined product families is easy.
• None of the client code breaks because the abstract interfaces don’t

change.
• Because the abstract factory creates a complete family of products, the

whole product family changes when the concrete factory is changed.

– It promotes consistency among products.
• It is the concrete factory’s job to make sure that the right products are

used together.

 It is also easy to replace any implementation of the product interfaces.

Just rebuild the library and copy into the client’s directory.

client
abstract interface

(a class with at least one
pure virtual function)

concrete
implementation

Client has a pointer statically
typed as pointer to interface,
but that pointer will refer to a
concrete implementation
object

Fact:
 This client will be compile-time independent of the
 concrete implementation if, and only if, it does not
 directly create an instance of the concrete class

The purpose of an abstract
interface is to provide a protocol
for clients to use to request
service from concrete objects
without coupling to their
implementations

Abstract Interface

Abstract Factory Structure

Implementation example

• Sample sample=new Sample();

• Sample mysample=new
MySample();

• Sample hissample=new
HisSample();

• f
• F
• Ff
• F
• F
• F
• f

• Public class Factory
 {
Public static Sample creator(int

which)
 {
 if (which==1)
 return new SampleA();

 　　 else if (which==2)
 　　 return new SampleB();

　　 }
　 }

Sample
sampleA=Factory.creator(1);

Implementation example

• public abstract class Factory{
• 　　 public abstract Sample creator();
• 　　 public abstract Sample2 creator(String name); }
• 　　 public class SimpleFactory extends Factory{
• 　　 public Sample creator(){
• 　　
• 　　 return new SampleA
• 　　 }
• 　　 public Sample2 creator(String name){
• 　　
• 　　 return new Sample2A
• 　　 } }
• 　　 public class BombFactory extends Factory{
• 　　 public Sample creator(){
• 　　
• 　　 return new SampleB
• 　　 }
• 　　 public Sample2 creator(String name){
• 　　
• 　　 return new Sample2B
• 　　 } }

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

