
COMPOSITE PATTERN
A Structural Pattern

THE BASICS

  Intent
  Compose objects into tree structures to

represent part-whole hierarchies
  Treat individual objects and compositions of

objects uniformly

 Why Use?
  Can interact with all the “participants” in the

same way
  Client can ignore the difference between

compositions of objects and individual objects
  Easier to add new components

STRUCTURE

KEY

Create an abstract class that represents
both primitives and their container (i.e.
the individual objects and a specific
collection of objects)

Abstract class declares operations that are:
1.  Specific to the composite
2.  But that are also shared by all the

composite objects (as a composite can be
made up of several composite objects)

WHO DOES WHAT

Component – Base class or interface
1.  Implements default behavior for the interface common to

all classes
2.  Declares interface for accessing and managing child

components

Composite
1.  Extends the component class
2.  Ability to pass a composite to a method that might be

expecting a component

Leaf: Defines behavior for primitive objects in
composition

CONSEQUENCES

Benefits
  It makes clients simpler, since they do not have

to know if they are dealing with a leaf or a
composite component.

  It makes it easy to add new kinds of components.
  It is helpful when dealing with recursive data

structures.

Disadvantages
  The design can be overly general - It makes it

harder to restrict the type of components of a
composite.

THE TANGIBLE WORLD

 Equipment is usually made of various parts.
Client may want to know the cost of the entire
composite or just a sub-component.
  Recursive in that a sub-part of a computer may be

made up of several other parts

 A drawing consists of multiple objects. An object
– such as a square – requires lines. A line
requires points. Depending on what type of
drawing you need, you combine the objects in
various different ways,
(But the disadvantage means a pencil could be

mistakenly added to a drawing,)

IN THE CODE WORLD

interface Component { }
Class Composite implements Component { }
Class LeafAA implements Component

 
 
#

#
Class LeafJZ extends Component

interface Equip {
 float calculate ();
 float getprice();
 float calmargin();

}

Component

class Module implements Equip {

 float price;
 List<Equip> mylist= new ArrayList<Equip>();

 public void add (Equip e){
 mylist.add(e);
 }

 public void remove (Equip e){
 mylist.remove(e);
 }

public float calculate(){
 Equip part=null;
 float total=0;
 Iterator<Equip>iterator=mylist.iterator();
 while(iterator.hasNext()) {
 part=iterator.next();
 float gmp=part.calculate();
 total=gmp+total;
 }
 return total;

}

Composite

Ability to add and
remove items from the
Composite

Create a list and
an iterator

public float getprice(){
 Equip part=null;
 float totalp=0;

 Iterator<Equip>iterator=mylist.iterator();
 while(iterator.hasNext()) {
 part=iterator.next();
 float pricc=part.getprice();
 totalp=pricc+totalp;
 }
 return totalp;
 }

 public float calmargin() {

 float margin=this.calculate()/this.getprice();
 return margin;
 }

}

Leaf
 public Hugepart(float price, float cost){
 this.price=price;
 this.cost=cost;
 }

 public float calculate() {
 float profit=this.price-this.cost;
 return profit;
 }

 public float getprice() {
 float A =this.price;
 return A;

}

 public float calmargin() {
 float margin= (this.price-

this.cost)/this.price;
 return margin;
 }

}

If there was another
Leaf (such as
Tinypart), the
formula used to
calculate gross
margin could be
different.

For example, could
add a discount to
the price

class Hugepart implements Equip {
 private float price;
 private float cost;

WHEN IMPLEMENTING, CONSIDER….

  Where should the child methods be declared?
 Transparency versus safety
 Safer in the composite - At run time, clients cannot

change components’ methods.
 Transparency is greater in the Component – All

components have same interface.

 Maximize Component Interface
 But putting them in the component violates class

hierarchy rules that says a class should only define
operations that are meaningful to subclasses. (Some
operations in Composite not relevant to leaf.)

RELATED PATTERNS

  Iterator: Traverse composites

 Visitor: Localizes operations and behavior that
would otherwise be distributed to composite and
leaf classes

 Wrapper/Decorator: Support the Component
interface with operations like Add, Remove,
GetChild

