PROTOTYPE
DESIGN PATTERN

JUSTIN HENDRIX CSPP 51023 WINTER 2010

from: Design Patterns (Gamma, Helm, Johnson, and Vlissides)
p. 117- 126

PROTOTYPE: INTENT

SPECIFY THE KINDS OF OBJECTS TO
CREATE USING A PROTOTYPICAL
INSTANCE, AND CREATE NEW OBJECTS
BY COPYING THIS PROTOTYPE.

Hide the concrete product classes from the client

—-- reduce number of names clients know about

—- client work with application-specific classes without modification
when a system should be independent of how its products are created,

composed and represented, and...

PROTOTYPE: APPLICABILITY

| ®
| —
-)

USE WHEN...

® WHEN THE CLASSES TO INSTANTIATE ARE SPECIFIED
AT RUN TIME.

® WHEN YOU WANT TO AVOID BUILDING A CLASS
HIERARCHY OF FACTORIES THAT PARALLELS THE
CLASS HIERARCHY OF PRODUCTS.

® WHEN INSTANCES OF A CLASS CAN HAVE ONE OF
ONLY A FEW COMBINATIONS OF STATE.

when a system should be independent of how its products are created,
composed and represented, and...

Client
Operation()

p = protoype -> Clone()

Prototype

prototypg —— 5

Clone()

T

ConcretePrototype1 ConcretePrototype2

Clone()

——

Clone()

I~ I~
return copy return copy
of self of self
-

PROTOTYPE:

STRUCTURE

A client asks a prototype to clone itself

PROTOTYPE: PARTICIPANTS

® PROTOTYPE

® DECLARES AN INTERFACE FOR CLONING ITSELF

® CONCRETEPROTOTYPE

® IMPLEMENTS AN OPERATION FOR CLONING ITSELF

® CLIENT

® CREATES A NEW OBJECT BY ASKING A PROTOTYPE TO
CLONE ITSELF

Client Prototype
Operation() prototype ——————-Clone()

T
|

’ T T
p = protoype -> CI@

ConcretePrototype1 ConcretePrototype2
Clone() Clone()

hg A g
| |

return copy return copy
of self of self

o ————

PROTOTYPE: STRUCTURE

A client asks a prototype to clone itself:

® Prototype

e declares an interface for cloning itself
e ConcretePrototype

e implements an operation for cloning itself
e (lient

e creates a new object by asking a prototype to clone itself

PROTOTYPE: CONSERQUENCE

—

HIDE THE CONCRETE PRODUCT
CLASSES FROM THE GCLIENT

(Like the Abstract Factory and Builder)-- thus reducing the number of
names clients know about

—- pattern lets a client work with application-specific classes without
modification

ADDITIONAL CONSEQUENCES

® ADDING AND REMOVING PRODUCTS AT RUN-TIME

® SPECIFYING NEW OBJECTS BY VARYING VALUES

® SPECIFYING NEW OBJECTS BY VARYING STRUCTURE
® REDUCED SUBCLASSING

® CONFIGURING AN APPLICATION WITH CLASSES

DYNAMICALLY
iL——f ‘J

— incorporate new concrete product class in a system by registering a
prototypical instance with the client, client can install an remove prototypes at
run-time

— let users define new classes without “programming”, new objects defined by
values not new classes

— i.e. subcircuits; using deep copy with Clone, circuits with different structures
can be prototypes and reused

- clone a prototype rather than create new object; benefit mostly C++ where
classses are not first-class objects; Smalltalk and Obj-C less benefit objects
already act like prototypes

- run-time environment load classes dynamically through checking instance of
each class into the prototype manager

PROTOTYPE: EXAMPLE

SOURCE: A&P WEB CONSULTING CORP.
HTTP:!//WWW.APWEBCO.COM/GOFPATTERNS/CREATIONAL/PROTOTYPE.HTML

ProductCache Product

+loadCache()
+getProduct()

+clone()

FANY

Book D¥D

Hclone() Hclone()

Example assumptions:
e An e-commerce application gathers product information trough complex queries against a legacy database.
e The legacy database is updated at predefined intervals which are known.
e The number of products allows caching with a reasonable memory consumption.
When a user asks for information for a certain product the application could gather that information in two ways:
1. execute the complex query against legacy database, gather the information, and instantiate the object.
2. (prototype pattern) instantiate the objects at predefined intervals and keep them in a cache, when an object is
requested, it is retrieved from cache and cloned. When the legacy database is updated, discard the content of
the cache and re-load with new objects.

public abstract class Product implements Cloneable {
private String SKU;
private String description;

public Object clone() {
Object clone = null;
try {
clone = super.clone();
} catch (CloneNotSupportedException e) {
e.printStackTrace();

return clone;

¥
public String getDescription() {
return description;

}
public String getSKU() {
return SKU;

public void setDescription(String string) {
description = string;

}
public void setSKU(String string) {
}

SKU = string;

public class Book extends Product {
private int numberOfPages;

public int getNumberOfPages() {
return numberOfPages;

public void setNumberOfPages(int i) {
numberOfPages = i;
public class DVD extends Product {

private int duration;

public int getDuration() {
return duration;

public void setDuration(int i) {
duration = i;

import java.util.x;
public class ProductCache {
private static Hashtable productMap = new Hashtable();

public static Product getProduct(String productCode) {
Product cachedProduct = (Product) productMap.get(productCode);
return (Product) cachedProduct.clone();

public static void loadCache() {
// for each product run expensive query and instantiate product
// productMap.put(productKey, product);
// for exemplification, we add only two products
Book bl = new Book();
bl.setDescription("Oliver Twist");
bl.setSKU("B1");
bl.setNumberOfPages(100);
productMap.put(bl.getSKU(), bl);
DVD d1 = new DVD();
dl.setDescription("Superman');
dl.setSKU("D1");
dl.setDuration(180);
productMap.put(dl.getSKU(), d1);

+

}
public class Application {
public static void main(String[] args) {
ProductCache. loadCache();

Book clonedBook = (Book) ProductCache.getProduct("B1");
System.out.println("SKU = " + clonedBook.getSKU());
System.out.println("SKU = " + clonedBook.getDescription());
System.out.println("SKU = " + clonedBook.getNumberOfPages());

DVD clonedDVD = (DVD) ProductCache.getProduct("D1");
System.out.println("SKU = " + clonedDVD.getSKU());
System.out.println("SKU = " + clonedDVD.getDescription());
System.out.println("SKU = " + clonedDVD.getDuration());

CONCLUSION

. 5

—-- Abstract Factory, Prototype, and Builder are more flexible than the Factory
method, but also more complex

—- Typically designs start out using factory method and evolve toward the
other creational patterns as the designer discovers where more flexibility is
nheeded

