
Prototype
Design Pattern

Justin Hendrix | CSPP 51023 | Winter 2010

from: Design Patterns (Gamma, Helm, Johnson, and Vlissides)
p. 117- 126

Prototype: Intent

Specify the kinds of objects to
create using a prototypical

instance, and create new objects
by copying this prototype.

Hide the concrete product classes from the client
-- reduce number of names clients know about
-- client work with application-specific classes without modification
when a system should be independent of how its products are created,
composed and represented, and...

Prototype: Applicability

Use when...

• When the classes to instantiate are specified
at run time.

• When you want to avoid building a class
hierarchy of factories that parallels the
class hierarchy of products.

• When instances of a class can have one of
only a few combinations of state.

when a system should be independent of how its products are created,
composed and represented, and...

Operation()
Client

Clone()
Prototype

Clone()
ConcretePrototype1

Clone()
ConcretePrototype2

prototype

p = protoype -> Clone()

return copy
of self

return copy
of self

Prototype: Structure

A client asks a prototype to clone itself

Prototype: Participants

• Prototype

• declares an interface for cloning itself

• ConcretePrototype

• implements an operation for cloning itself

• Client

• creates a new object by asking a prototype to
clone itself

Operation()
Client

Clone()
Prototype

Clone()
ConcretePrototype1

Clone()
ConcretePrototype2

prototype

p = protoype -> Clone()

return copy
of self

return copy
of self

Prototype: Structure

A client asks a prototype to clone itself:
• Prototype
• declares an interface for cloning itself
• ConcretePrototype
• implements an operation for cloning itself
• Client
• creates a new object by asking a prototype to clone itself

Prototype: Consequence

Hide the concrete product
classes from the client

(Like the Abstract Factory and Builder)-- thus reducing the number of
names clients know about
-- pattern lets a client work with application-specific classes without
modification

Additional Consequences

• Adding and removing products at run-time

• Specifying new objects by varying values

• Specifying new objects by varying structure

• Reduced subclassing

• Configuring an application with classes
dynamically

- incorporate new concrete product class in a system by registering a
prototypical instance with the client, client can install an remove prototypes at
run-time

- let users define new classes without “programming”, new objects defined by
values not new classes

- i.e. subcircuits; using deep copy with Clone, circuits with different structures
can be prototypes and reused

- clone a prototype rather than create new object; benefit mostly C++ where
classses are not first-class objects; Smalltalk and Obj-C less benefit objects
already act like prototypes

- run-time environment load classes dynamically through checking instance of
each class into the prototype manager

Prototype: Example

Source: A&P Web Consulting Corp.
http://www.apwebco.com/gofpatterns/creational/Prototype.html

Example assumptions:
• An e-commerce application gathers product information trough complex queries against a legacy database.
• The legacy database is updated at predefined intervals which are known.
• The number of products allows caching with a reasonable memory consumption.

When a user asks for information for a certain product the application could gather that information in two ways:
1. execute the complex query against legacy database, gather the information, and instantiate the object.
2. (prototype pattern) instantiate the objects at predefined intervals and keep them in a cache, when an object is

requested, it is retrieved from cache and cloned. When the legacy database is updated, discard the content of
the cache and re-load with new objects.

public abstract class Product implements Cloneable {
! ! private String SKU;
! ! private String description;!
! !
! ! public Object clone() {
! ! ! Object clone = null;
! ! ! try {
! ! ! ! clone = super.clone();
! ! ! } catch (CloneNotSupportedException e) {
! ! ! ! e.printStackTrace();
! ! ! }
! ! ! return clone;
! ! }
! ! public String getDescription() {
! ! ! return description;
! ! }
! ! public String getSKU() {
! ! ! return SKU;
! ! }
! ! public void setDescription(String string) {
! ! ! description = string;
! ! }
! ! public void setSKU(String string) {
! ! ! SKU = string;
! ! }
! }

! public class Book extends Product {
! ! private int numberOfPages;

! ! public int getNumberOfPages() {
! ! ! return numberOfPages;
! ! }
! ! public void setNumberOfPages(int i) {
! ! ! numberOfPages = i;
! ! }
! }
! public class DVD extends Product {
! ! private int duration;

! ! public int getDuration() {
! ! ! return duration;
! ! }
! ! public void setDuration(int i) {
! ! ! duration = i;
! ! }
! }
!

! import java.util.*;
! public class ProductCache {
! ! private static Hashtable productMap = new Hashtable();

! ! public static Product getProduct(String productCode) {
! ! ! Product cachedProduct = (Product) productMap.get(productCode);
! ! ! return (Product) cachedProduct.clone();
! ! }

! ! public static void loadCache() {
! ! ! // for each product run expensive query and instantiate product
! ! ! // productMap.put(productKey, product);
! ! ! // for exemplification, we add only two products
! ! ! Book b1 = new Book();
! ! ! b1.setDescription("Oliver Twist");
! ! ! b1.setSKU("B1");
! ! ! b1.setNumberOfPages(100);
! ! ! productMap.put(b1.getSKU(), b1);
! ! ! DVD d1 = new DVD();
! ! ! d1.setDescription("Superman");
! ! ! d1.setSKU("D1");
! ! ! d1.setDuration(180);
! ! ! productMap.put(d1.getSKU(), d1);
! ! }
! }
! public class Application {
! ! public static void main(String[] args) {
! ! ! ProductCache.loadCache();

! ! ! Book clonedBook = (Book) ProductCache.getProduct("B1");
! ! ! System.out.println("SKU = " + clonedBook.getSKU());
! ! ! System.out.println("SKU = " + clonedBook.getDescription());
! ! ! System.out.println("SKU = " + clonedBook.getNumberOfPages());

! ! ! DVD clonedDVD = (DVD) ProductCache.getProduct("D1");
! ! ! System.out.println("SKU = " + clonedDVD.getSKU());
! ! ! System.out.println("SKU = " + clonedDVD.getDescription());
! ! ! System.out.println("SKU = " + clonedDVD.getDuration());
! ! }
! }

Conclusion

-- Abstract Factory, Prototype, and Builder are more flexible than the Factory
method, but also more complex
-- Typically designs start out using factory method and evolve toward the
other creational patterns as the designer discovers where more flexibility is
needed

