CHAIN OF
RESPONSIBILITY
DESIGN PATTERN

Carrie Ann Crot

INTENT

@ Behavioral pattern

Concerned with algorithms and assignments of
responsibility between objects

Describe the pattern of communication between
objects and classes

Characterize complex control flow that’s difficult to
follow at run time
@ Avoid coupling the sender of a request to its
receiver
By giving more than one object a chance to handle
the request
® Chain the receiving objects and pass the request
along the chain until an object handles it

NN AN =Y WA [E— = N\

@ Describes how to handle a single request by a
chain of multiple handler objects

® The request has to be processed by only one
handler object from this chain

® The determination of processing the request is
decided by the current handler

@ If the current handler object is able to process
the request,

then the request will be processed in the current
handler

Otherwise the current handler object needs to shirk
responsibility and push the request to the next chain
handler object

@ Pattern continues on until the request is
processed

‘\ I o N 7\ i L I ‘\
R) y = \ R
\ N \ A L7 \A \ N

L I I i "B I . Jo= = I .
Jisual Paradigm for UML Community Edilion [nol for co

\ i/ [
o

T o essor

Handler
| thandieRequest()

Client LS 8-S

ConcreteHandler 1 ConcreteHandler2
+handleRequest() +handleRequest()

E\V“\] E\\\“\ J’///’:\‘ \ ‘//Li: ﬁ i:i‘\\ \ // : J’/"/’:\ \ ‘/Li:
e NS AR BN L O O NEN N
Y S | / =\ y. LA W A B S

N~ - A A - ~_ ~_ -

@ Applicability
You want to decouple a request’s sender and receiver

Multiple objects, determined at runtime, are
candidates to handle the request

You don’t want to specify handlers explicitly in your
code
® Consequences

Sender and receiver have not explicit knowledge of
each other

Receipt is not guaranteed- some request might not
get handled

The chain of handlers can be modified dynamically

@ At a University, to purchase new equipment
requires prior approval, the level of approval
depends on how much money you intend to
spend

® For example the chain is:

Manager - Lab Director - Department Business
Manager - Vice Chancellor of Research

@ Chain of responsibility is utilized to check
who is responsible to approve your
expenditure

import java.io.¥*;
abstract class PurchasePower {
protected final double base = 500;
protected PurchasePower successor;
public void setSuccessor (PurchasePower successor)
this.successor = successor;
}
abstract public void processRequest (PurchaseRequest request);
}
class ManagerPPower extends PurchasePower {
private final double ALLOWABLE = 10*base;
public void processRequest (PurchaseRequest) {
if (request.getAmount () <ALLOWABLE)

System.out.printlin(“Manager will approve
S”+request.getAmount ());

else
if (successor !=null)

sucessor.processRequest (request) ;

http://www.javacamp.org/designPattern/chains.html

XAMPLE CONTINUTED

class LabDirectorPPower extends PurchasePower {

private final double ALLOWABLE = 20 * base;

public void processRequest (PurchaseRequest request) {
if (request.getAmount () < ALLOWABLE)

System.out.println("Lab Director will approve S$"+
request.getAmount ()) ;

else
if (successor != null)

successor.processRequest (request) ;

}

//Above class method is copied for
//Department Business Manager
//Vice Chancellor of Research

//class PurchaseRequest

//is a helper class that hold the request information

'LE CONTINUED

class CheckAuthority {
public static void main(String[] args) {

//create an object each for Manager, Lab Director, Dept Business Manager and
Vice Chancellor of Research
ManagerPPower manager = new ManagerPPower () ;
LabDirectorPPower labDirector = new LabDirectorPPower () ;
DeptBusinessManagerPPower deptBusManager = new DeptBusinessManagerPPower () ;

ViceChancellorOfResearchPPower viceChancellor = new ViceChancellorOfResearchPPower () ;

//Build the responsibility chain to handle the different requests from the
client//

manager .setSuccessor (labDirector) ;
labDirector.setSuccessor (deptBusManager) ;

deptBusManager .setSuccessor (viceChancellor);

//read input value and send to manager for screening, to see who is able to
approve request

tryf

while (true) {

System.out.println("Enter the amount to check who should
approve your expenditure.");

System.out.print (">");

double d = Double.parseDouble (new BufferedReader (new
InputStreamReader (System.in)) .readLine());

manager .processRequest (new PurchaseRequest (0, d, "General"))

|'

@ shendan.cs.uchicago.edu - PuTTY

