
Carrie Ann Crot



� Behavioral pattern

� Concerned with algorithms and assignments of 
responsibility between objects

� Describe the pattern of communication between 
objects and classes

� Characterize complex control flow that’s difficult to � Characterize complex control flow that’s difficult to 
follow at run time  

� Avoid coupling the sender of a request to its 
receiver

� By giving more than one object a chance to handle 
the request

� Chain the receiving objects and pass the request 
along the chain until an object handles it



� Describes how to handle a single request by a 
chain of multiple handler objects

� The request has to be processed by only one 
handler object from this chain

� The determination of processing the request is 
decided by the current handlerdecided by the current handler

� If the current handler object is able to process 
the request, 
� then the request will be processed in the current 
handler

� Otherwise the current handler object needs to shirk 
responsibility and push the request to the next chain 
handler object

� Pattern continues on until the request is 
processed





� Applicability

� You want to decouple a request’s sender and receiver

� Multiple objects, determined at runtime, are 

candidates to handle the request

� You don’t want to specify handlers explicitly in your � You don’t want to specify handlers explicitly in your 

code

� Consequences

� Sender and receiver have not explicit knowledge of 

each other

� Receipt is not guaranteed– some request might not 

get handled

� The chain of handlers can be modified dynamically



� At a University, to purchase new equipment 

requires prior approval, the level of approval 

depends on how much money you intend to 

spend

For example the chain is: � For example the chain is: 

� Manager � Lab Director � Department Business 

Manager � Vice Chancellor of Research

� Chain of responsibility is utilized to check 

who is responsible to approve your 

expenditure



import java.io.*; 

abstract class PurchasePower { 

protected final double base = 500; 

protected PurchasePower successor; 

public void setSuccessor(PurchasePower successor)

this.successor = successor; 

} 

abstract public void processRequest(PurchaseRequest request); abstract public void processRequest(PurchaseRequest request); 

}

class ManagerPPower extends PurchasePower{

private final double ALLOWABLE = 10*base;

public void processRequest(PurchaseRequest){

if(request.getAmount()<ALLOWABLE)

System.out.printlin(“Manager will approve 
$”+request.getAmount());

else

if (successor !=null)

sucessor.processRequest(request);

}

}

http://www.javacamp.org/designPattern/chains.html



class LabDirectorPPower extends PurchasePower {

private final double ALLOWABLE = 20 * base;

public void processRequest(PurchaseRequest request ) {

if( request.getAmount() < ALLOWABLE )

System.out.println("Lab Director will approve $"+ 

request.getAmount());

else

if( successor != null)

successor.processRequest(request);

}

}

//Above class method is copied for 

//Department Business Manager 

//Vice Chancellor of Research 

//class PurchaseRequest

//is a helper class that hold the request information



class CheckAuthority {

public static void main(String[] args){

//create an object each for Manager, Lab Director, Dept Business Manager and 

Vice Chancellor of Research

ManagerPPower manager = new ManagerPPower();

LabDirectorPPower labDirector = new LabDirectorPPower();

DeptBusinessManagerPPower deptBusManager = new DeptBusinessManagerPPower();

ViceChancellorOfResearchPPower viceChancellor = new ViceChancellorOfResearchPPower();

//Build the responsibility chain to handle the different requests from the 

client//client//

manager.setSuccessor(labDirector);

labDirector.setSuccessor(deptBusManager);

deptBusManager.setSuccessor(viceChancellor);

//read input value and send to manager for screening, to see who is able to 

approve request

try{

while (true) {

System.out.println("Enter the amount to check who should 

approve your expenditure.");

System.out.print(">");

double d = Double.parseDouble(new BufferedReader(new 

InputStreamReader(System.in)).readLine());

manager.processRequest(new PurchaseRequest(0, d, "General"))




