
Bridge Pattern

A Structural Design Pattern



Context

 When an abstraction has several implementations, 
we normally do this through inheritance

 Not always flexible because inheritance binds an 
implementation to the abstraction permanently

 Makes difficult to modify, extend abstractions and 
implementations independently



Intent

 Decouple an abstraction from its implementation 
so that the two can vary independently.

 Separate the abstraction and its implementation 
and have separate inheritance structure for both.

 Also known as “handle/body”



Structure



Example



Code
/* Abstraction */

Public abstract class Vehicle {

Engine engine; // reference to the implementor

Public abstract void drive();

Public void setEngine(Engine engine) {

This.engine = engine;

}

}

/* Refined Abstraction */

Public class Car extends Vehicle {

Car(Engine engine) {

This.engine = engine;

}

Public void drive() {

// Car implementation of the drive method

Engine.go();

}

}

/* Implementor */

Public interface Engine {

Public void go();

}

/* Concrete Implementation1 */

Public class BigEngine implements Engine {

Public void go() {

System.out.println(“Running big engine”);

}

}

/* Concrete Implementation2 */

Public class SmallEngine implements Engine {

Public void go() {

System.out.println(“Running small engine”);

}

}

Public class Client {

public static void main(String[] args) {

Vehicle v = new Car(new SmallEngine());

v.drive();

v.setEngine(new BigEngine());

v.drive();

}

}



Consequences

 Decouples interface and implementation

 Change the object implementation at run-time

 Extend the abstraction and implementor 
hierarchies independently

 Hides implementation details from clients


