


Vs

~ -

P
NN /D D s N AL

When an abstraction has several implementations,
we normally do this through inheritance

Not always flexible because inheritance binds an
implementation to the abstraction permanently

Makes difficult to modify, extend abstractions and
implementations independently



Decouple an abstraction from its implementation
so that the two can vary independently.

Separate the abstraction and its implementation
and have separate inheritance structure for both.

Also known as “handle/body”









™\ ~ ~

S N N N

/* Abstraction */
Public abstract class Vehicle {
Engine engine; // reference to the implementor
Public abstract void drive();
Public void setEngine(Engine engine) {
This.engine = engine;
b
b

/* Refined Abstraction */

Public class Car extends Vehicle {
Car(Engine engine) {
This.engine = engine;

I

Public void drive() {

// Car implementation of the drive method
Engine.go();

b

/* Implementor */

Public interface Engine {
Public void go();

it

/* Concrete Implementationl */
Public class BigEngine implements Engine {
Public void go() {
System.out.printIn("Running big engine”);
b
b

/* Concrete Implementation2 */
Public class SmallEngine implements Engine {
Public void go() {
System.out.println("Running small engine”);
b
b

Public class Client {
public static void main(String[] args) {
Vehicle v = new Car(new SmallEngine());
v.drive();
v.setEngine(new BigEngine());
v.drive();



Decouples interface and implementation
Change the object implementation at run-time

Extend the abstraction and implementor
hierarchies independently

Hides implementation details from clients



