
Strategy
Define a family of algorithms, encapsulating
each one, and make them interchangeable.

Strategy lets the algorithm vary
independently from clients that use it.

Not to be confused with…

Strategery

Define a family of algorithmics, encapsulacating
each one, and make them interjectionable.

Strategery lets the algorithmic vary
interdepartmentally from clients that use it.

Design Patterns (Gamma, Helm, Johnson,
Vlissides)

In normal words…

If you have an object that can do
something in many different ways,
rather than putting each way into a

method in the object and getting
confused, put each way of

performing the behavior in its own
class.

Generic Strategy Pattern

Modified from Design Patterns (Gamma, Helm,
Johnson, Vlissides)

Configured with a
ConcreteStrategy
object. Maintains a
reference to a
Strategy object.

Declares interface
common to all
supported
algorithms. Used by
Context

Implements
algorithm using
Strategy interface

PowerPoint Strategy Pattern
(Example)

Modified from Design Patterns (Gamma, Helm,
Johnson, Vlissides)

Instead of this

override
PresentPowerpoint()

override
PresentPowerpoint()

override
PresentPowerpoint()

You have this

PerfectPowerpoint
PresentPerfectPowerpoint(
)

AlrightPowerpoint
PresentAlrightPowerpoint()

LamePowerpoint
PresentLamePowerpoint()

using System;

using System.Collections.Generic;

using System.Text;

namespace StrategyExample

{

 class Program

 {

 static void Main()

 {

 Presenter p = new Presenter();

 p.SetPresentStrategy(new PerfectPowerPointPresentation());

 p.Present();

 p.SetPresentStrategy(new AlrightPowerPointPresentation());

 p.Present();

 p.SetPresentStrategy(new LamePowerPointPresentation());

 p.Present();

 Console.ReadKey();

 }

 }

 abstract class PresentStrategy
 {
 public abstract void Present();
 }

 class PerfectPowerPointPresentation : PresentStrategy
 {
 public override void Present()
 {
 Console.WriteLine("Perfect: The presentation presented was incredible!!!");
 }
 }

 class AlrightPowerPointPresentation : PresentStrategy
 {
 public override void Present()
 {
 Console.WriteLine("Alright: The presentation presented was just alright");
 }
 }

 class LamePowerPointPresentation : PresentStrategy
 {
 public override void Present()
 {
 Console.WriteLine("Lame: The presentation presented was the one you’re
watching now.");
 }
 }

class Presenter

 {

 private PresentStrategy _presentstrategy;

 public void SetPresentStrategy(PresentStrategy
presentstrategy)

 {

 this._presentstrategy = presentstrategy;

 }

 public void Present()

 {

 _presentstrategy.Present();

 Console.WriteLine();

 }

 }

}

Results from Example

When do I use this?

• When many related classes differ
only in their behavior.

• You need different variants of an
algorithm.

• An algorithm uses data that clients
shouldn’t know about.

• In place of a conditional statement

Modified from Design Patterns (Gamma, Helm,
Johnson, Vlissides)

	Slide 1
	In normal words…
	Generic Strategy Pattern
	PowerPoint Strategy Pattern (Example)
	Instead of this
	You have this
	Slide 7
	Slide 8
	Slide 9
	Results from Example
	When do I use this?

