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Decorator: Intent
• A way to attach additional responsibilities to 

an object dynamically at run time. 

• A flexible alternative to subclassing for 
extending functionality of a class

• Also known as a “Wrapper”
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The Decorator 
class is typically 
an abstract 
class
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is typically an 
abstract class or 
an interface
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Typically the 
majority of 
decorator 
methods just 
pass through to 
the decorated 
object

Decorator Decorated

aMethod( )

optionally do something before 
calling decorated.aMethod( )

optionally do something after 
calling decorated.aMethod( )
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An example
//base class
class Window() {

getPosition();
setPosition();
...

}

//decorator class
class decorateWindow() {

getPosition() {
//pass getPosition() 

}
setPosition() {

//pass setPosition()
}
uniqueMethod();
...

}

//create decorated 
object

decorateWindow X = new 
decorateWindow ( 
new Window() );

X.getPosition();
X.uniqueMethod();
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Another example
FileReader frdr = new FileReader(filename);

//decorator
BufferedReader brdr = new BufferedReader(frdr); 

//second decorator
LineNumberReader lrdr = new LineNumberReader(brdr);  

//call lrdr as you would frdr, now with additional capabilties    
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Decorator: Advantages
• More flexibility that static inheritance. Can add, mix or 

even remove responsibilities of a class incrementally as 
needed (at runtime)

• Existing classes do not have to be modified to support 
extra functionality, as they are not aware that they are 
being decorated

• You can restrict the use of an object's public methods. 
Instead of forwarding calls to a public method, a decorator 
can veto a method by throwing an exception from the 
wrapper method.
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Decorator: Disadvantages
• Decorators are transparent but not identical to the 

components they decorate

• Decorators are small and can be confusing to debug as 
their combined collaboration is generally the value not 
their distinct class or the value of their local variables
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Related Patterns
• Adapter: will give an object a completely 

new interface

• Composite: intended for object aggregation

• Strategy: lets you change the guts of an 
object as opposed to the skin (decorator)
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