
DECORATOR
A Structural Pattern

Matt Mayfield, 26 Jan 2010

Saturday, February 20, 2010

Decorator: Intent
• A way to attach additional responsibilities to

an object dynamically at run time.

• A flexible alternative to subclassing for
extending functionality of a class

• Also known as a “Wrapper”

Saturday, February 20, 2010

Window Window Window

Base Class/Object Decorated Class/Object

Saturday, February 20, 2010

Component

Operation()

Decorator

Operation()

ConcreteComponent

Operation()

ConcreteDecoratorA

Operation()

ConcreteDecoratorB

Operation()
AddedBehavior()

component

The Decorator
class is typically
an abstract
class

Decorated class
is typically an
abstract class or
an interface

Saturday, February 20, 2010

Client

aMethod()

Typically the
majority of
decorator
methods just
pass through to
the decorated
object

Decorator Decorated

aMethod()

optionally do something before
calling decorated.aMethod()

optionally do something after
calling decorated.aMethod()

Saturday, February 20, 2010

An example
//base class
class Window() {

getPosition();
setPosition();
...

}

//decorator class
class decorateWindow() {

getPosition() {
//pass getPosition()

}
setPosition() {

//pass setPosition()
}
uniqueMethod();
...

}

//create decorated
object

decorateWindow X = new
decorateWindow (
new Window());

X.getPosition();
X.uniqueMethod();

Saturday, February 20, 2010

Another example
FileReader frdr = new FileReader(filename);

//decorator
BufferedReader brdr = new BufferedReader(frdr);

//second decorator
LineNumberReader lrdr = new LineNumberReader(brdr);

//call lrdr as you would frdr, now with additional capabilties

Saturday, February 20, 2010

Decorator: Advantages
• More flexibility that static inheritance. Can add, mix or

even remove responsibilities of a class incrementally as
needed (at runtime)

• Existing classes do not have to be modified to support
extra functionality, as they are not aware that they are
being decorated

• You can restrict the use of an object's public methods.
Instead of forwarding calls to a public method, a decorator
can veto a method by throwing an exception from the
wrapper method.

Saturday, February 20, 2010

Decorator: Disadvantages
• Decorators are transparent but not identical to the

components they decorate

• Decorators are small and can be confusing to debug as
their combined collaboration is generally the value not
their distinct class or the value of their local variables

Saturday, February 20, 2010

Related Patterns
• Adapter: will give an object a completely

new interface

• Composite: intended for object aggregation

• Strategy: lets you change the guts of an
object as opposed to the skin (decorator)

Saturday, February 20, 2010

