
CMSC 23700
Winter 2010

Introduction to Computer Graphics Project 3
February 5

Animation and shadows
Due: Friday, February 19, 10pm

1 Summary

In this project you will implement skeletal-based character animation and shadow mapping. The
project can logically be divided into three steps: skeletal-animation, skinning the skeleton with a
mesh, and rendering shadows. Each of these steps is non-trivial, so you should start immediately.

2 Skeletal animation

Skeletal animation is a technique for animating meshes, such as those that represent creatures in
a 3D game. The basic idea is that the model is defined by a hierarchical skeleton, which consists
of a tree of joints, and one or more triangle meshes, or skins, which are attached to the skeleton.
Each joint (except the root) has a parent joint, a position in its parent’s coordinate space, and an
orientation. Rather than directly animate the mesh, the animator animates the skeleton and the mesh
follows the skeleton’s motion.

An animation is specified as a sequence of poses, which represent the skeleton’s position at
various points in time. Each pose is a complete skeleton; rendering occurs by interpolating between
poses, then computing the vertex positions of the skin(s) for the interpolated skeleton, and then
drawing the mesh.

3 Animating the skeleton

The file guard.c contains the definition of an animated character.1 In order to render the skeleton,
you will first have to compute an interpolated set of joints. This is done by linearly interpolating
the positions and spherically interpolating the orientations between the previous keyframe and the
next keyframe. The sample code includes a function DrawSkeleton that will draw a skeleton as
a stick figure (you will have to provide the shader for it).

1Normally, such definitions are loaded from files.



4 Skinning the model

Instead of specifying the position of the vertices, we compute them from the positions of the joints
(after interpolation). For each vertex V , there are nV weights W1, . . . , WnV . The position of V is
then defined by

Pos(V ) =
nV∑
i=1

Pos(Wi)

where the position of a weight W with associated joint J is defined by

Pos(W ) = bW (Pos(J) + RJvW )

where Pos(J) is the interpolated position of J , RJ is the interpolated orientation of J , bW is W ’s
bias, and vW is W ’w position in J’s coordinate space. In the sample code, RJ is represented as a
unit quaternion; the file quat.h provides operations on quaternions, such as spherical interpolation
and transforming a vector by a quaternion.

5 Shadows

Shadows are one of the most important visual cues for understanding the relationship of objects
in a 3D scene. As discussed in class, there are a number of techniques that can be used to render
shadows using OpenGL. For this project, we will use shadow mapping.

The idea is to compute a map (i.e., texture) that identifies which screen locations are shadowed
with respect to a given light. We do this by rendering the scene from the light’s point of view
into the depth buffer. Then we copy the buffer into a depth texture that is used when rendering the
scene. When rendering the scene, we compute a 〈s, t, r〉 texture coordinate for a point p, which
corresponds to the coordinates of that point in the light’s clipping space. The r value represents
the depth of p in the light’s view, which is compared against the value stored at 〈s, t〉 in the depth
texture. If r is greater than the texture value, then p is shadowed. To implement this technique,
we must construct a transformation that maps eye-space coordinates to the light’s clip-space (see
Figure 1). Let

• Mmodel be the model matrix

• Mview be the camera’s view matrix

• Mlight be the light’s view matrix, and

• Plight be the light’s projection matrix.

A vertex p that has been transformed by OpenGL’s model-view matrix will be MviewMmodelp. To
transform this point to the light’s homogeneous clip space, we first apply the inverse view matrix
(M−1

view), then the light’s view matrix (Mlight), and finally the light’s projection matrix (Plight). Af-
ter the perspective division, the coordinate will be in the range [−1 . . . 1], but we need values in
the range [0 . . . 1] to index the depth texture, so we add a scaling transformation (S(0.5)) and a
translation (T(0.5, 0.5, 0.5)). The final matrix is

Mtex = T(0.5, 0.5, 0.5)S(0.5)PlightMlightM−1
view

2



Model space

World space

View
eye-space

Light
eye-space

View
cip-space

Light
clip-space

Light's projection
matrix

Light's view matrix

Model matrix

View matrix

Projection matrix

Figure 1: The coordinate-space transforms required for shadow mapping

Multiplying this matrix by the transformed point gives us

p′ = MtexMviewMmodelp

= T(0.5, 0.5, 0.5)S(0.5)PlightMlightp

The sample code defines a fixed directional light l. You will need to compute the ambient (Al)
and diffuse (Dl) intensity vectors using the techniques of Project 2. You should also compute a
value Sl, which is 0.5 when the pixel is in shadow and 1.0 otherwise. Then, assuming that the input
color is Cin, A is the global ambient light level, and L is the set of enabled lights, the resulting color
should be

Cout = Cin max

(
A, clamp

(∑
l∈L

Sl(Al + Dl)

))

5.1 User interface

The sample code supports an interface for manipulating the view using either the keyboard or mouse.
In addition, you will add code to handle the following key command:

m toggle mesh mode between no mesh, wireframe, and mesh

3



6 Extra credit

Some (but not all) of the skins have specular and bump map textures. If the color texture for a
skin is in the file "foo.png", then the specular map is in "foo_s.png" and the bump map is
in "foo_h.png". For extra credit, you may implement specular highlights and bump mapping
when rendering the model’s mesh. Note that the specular maps are three-channel maps and thus do
not specify an exponent.

7 Hints

Break the project into stages; get each stage working before starting on the next.

1. get the skeleton animated,

2. compute the mesh and render it as a wireframe,

3. add the textures for to the mesh,

4. render the shadow buffers, and

5. add shadowing to the rendering of the model.

Getting the shadowing to work is difficult, so you should try to get the other parts done by the end
of the first week so you have plenty of time for the last two steps.

Because the light is directional, you will need to use an orthographic projection when rendering
the shadow map. Also, since its position is fixed, you can compute its model-view and projection
matrices as startup time. You can also precompute the texture matrix needed to map eye-space
vertices to the light’s clipping space.

You may find it useful to render the shadow map to the screen as a debugging aid. One way to
do this is to create a second window that is the shadowmap size. You can map the depth values to
a grey scale (i.e., 0 maps to black and 1 maps to white) using a simple shader. The GLUT library
supports multiple windows (or you can dump the shadow map to a file).

4


