CMSC 23700 Winter 2010	Introduction to Computer Graphics	Homework 4 Due February 23

One way to make level-of-detail (LOD) transitions is to use an α *fade*, where you lerp the α channel to blend the two LODs. For example, assume that you have a triangle $\triangle \langle \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3 \rangle$ and a vertex \mathbf{q} that splits the triangle into two triangles $\triangle \langle \mathbf{p}_1, \mathbf{p}_2, \mathbf{q} \rangle$ and $\triangle \langle \mathbf{p}_1, \mathbf{q}, \mathbf{p}_3 \rangle$ as follows:

At the coarse LOD, we just render $\triangle \langle \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3 \rangle$, and at the fine LOD, we render both $\triangle \langle \mathbf{p}_1, \mathbf{p}_2, \mathbf{q} \rangle$ and $\triangle \langle \mathbf{p}_1, \mathbf{q}, \mathbf{p}_3 \rangle$, but in between we render all three triangles and use alpha blending to smooth the transition.

Assuming that $0 \le t \le 1$, give the blending equation that describes how to combine the two images as a function of t. It should be the case that when t = 0, just the coarse LOD is rendered and when t = 1, just the fine LOD is rendered.