CMSC 2	3700
Winter 2	2010

Introduction to Computer Graphics

Homework 2 Due January 28

For these questions, you may assume exact real arithmetic (*i.e.*, you do not need to worry about floating-point errors).

- 1. Given a ray $R(t) = \mathbf{o} + t\mathbf{d}$, and a cone whose radius is r and height is h with its base centered at the origin of the X Y plane and its apex at (0, 0, h).
 - (a) What is the polynomial whose roots determine the intersection points of R(t) with the side of the cone?
 - (b) If the ray intersects the side of the code at the point $\mathbf{p} = \langle x, y, z \rangle$, where 0 < z < h, what is the unit normal of the cone's surface at \mathbf{p} ?
- 2. An *oriented bounding box* (OBB) can be represented by a center point **p**, a 3x3 rotation matrix **R** (the columns of this matrix define the axes of the OBB), and a vector **r** of extents (the distances from the center to the sides along each of the OBB's axes).
 - (a) Define an affine transformation that takes the axis-aligned $2 \times 2 \times 2$ cube centered at the origin to the OBB.
 - (b) Given a sphere $\langle \mathbf{c}, r \rangle$, outline a test to determine if the sphere intersects the OBB.