1. Consider two unit vectors, **u** and **v**. The *linear interpolation* between these vectors is defined to be

$$lerp(\mathbf{u}, t, \mathbf{v}) = (1 - t)\mathbf{u} + t\mathbf{v}$$

where $0 \le t \le 1$. While this operation works well when the vectors represent positions, it does not work well when the vectors represent directions, since the angle between \mathbf{u} and $\operatorname{lerp}(\mathbf{u}, t, \mathbf{v})$ is not a linear function of t.

Give psuedocode for a function $slerp(\mathbf{u}, t, \mathbf{v})$, where $0 \le t \le 1$, that returns a unit vector \mathbf{w} , such that the angle between \mathbf{u} and \mathbf{w} is a linear function of t.

Recall that the angle θ between unit vectors \mathbf{u} and \mathbf{v} is determined by $\theta = \arccos(\mathbf{u} \cdot \mathbf{v})$.

2. Consider the following picture, where \mathbf{n} , \mathbf{l} , and \mathbf{r} are all unit vectors. Give an equation for \mathbf{r} in terms of \mathbf{n} and \mathbf{l} (*i.e.*, that does not refer to θ).

3. Prove that for any three vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \Re^3$,

$$\mathbf{u} \times \mathbf{v} \times \mathbf{w} = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{v} \cdot \mathbf{w})\mathbf{u}$$

4. Affine transformations can be represented by 4×4 homogeneous matrices with the following shape:

$$\left[\begin{array}{cc} \mathbf{M} & \mathbf{t} \\ \mathbf{0} & 1 \end{array}\right]$$

where M is a 3×3 matrix and t is a vector. We can use $\langle \mathbf{M} \mid \mathbf{t} \rangle$ as a more compact notation for this class of matrices. The product of two homogeneous matrices is

$$\langle \mathbf{M}_1 \mid \mathbf{t}_1 \rangle \langle \mathbf{M}_2 \mid \mathbf{t}_2 \rangle = \langle \mathbf{M}_1 \mathbf{M}_2 \mid \mathbf{M}_1 \mathbf{t}_2 + \mathbf{t}_1 \rangle$$

and applying the transformation to a homogeneous point is

$$\langle \mathbf{M} \mid \mathbf{t}
angle \left[egin{array}{c} \mathbf{v} \ 1 \end{array}
ight] = \mathbf{M}_1 \mathbf{v} + \mathbf{t}$$

If we restrict ourselves to isotropic (uniform) scaling, rotation, and translation, then these matrices are called *SRT* transforms and have the form $\langle s\mathbf{R} \mid \mathbf{t} \rangle$, where s is a scalar and \mathbf{R} is a rotation matrix. Given this notation, solve the following equations:

- (a) $\langle s_1 \mathbf{R}_1 \mid \mathbf{t}_1 \rangle \langle s_2 \mathbf{R}_2 \mid \mathbf{t}_2 \rangle$
- (b) $\langle s\mathbf{R} \mid \mathbf{t} \rangle \begin{bmatrix} \mathbf{v} \\ 1 \end{bmatrix}$
- (c) $\langle s\mathbf{R} \mid \mathbf{t} \rangle^{-1}$