
Issues in Concurrent Language
Design

John Reppy
AT&T Labs Research

November 1996

Assumptions
My focus is on concurrency, not parallelism or
distributed programming.

Motivation is concurrency in user interfaces and
concurrency in distributed systems.

Higher-order sequential language: functions as
values, data abstraction, polymorphism.

1

What is important?
Robustness and correctness.

Expressiveness.

Modularity.

Performance.

2

Synchronization and communication

The choice of synchronization and communication
mechanisms is the most important design choice in a
concurrent language.

Should these be independent or coupled?

What guarantees should be provided?

3

Synchronization (continued ...)

There are a range of mechanisms found in
concurrent languages:

Shared memory (locks and condition variables)

Synchronous memory (I-structures and
M-structures)

Asynchronous message passing (buffered
channels)

Synchronous message passing (blocking send)

RPC (aka extended rendezvous)

4

Design point:

Shared-memory is a poor programming model

Although one can write very efficient programs
this way, the model does not promote
correctness.

It requires defensive programming (protect your
data/code from interference), without compiler
support.

Shared-memory primitives do not fit well with a
value-oriented programming style.

5

Message ordering

Some recent designs have proposed treating
buffered channels as multisets (instead of as
queues).

This has implementation advantages in distributed
settings, and allows an easy undo mechanism for
communications.

6

Design point:

FIFO ordering on messages is good

There are very few interprocess interactions that do
not require at least a FIFO ordering on messages.

Put(1)

Get
x = 1

x = 2
1

Put(2)

7

Transparent distribution

Some people argue that we should implement
concurrent languages on distributed systems in a
transparent fashion — i.e., local and remote
communication should look the same.

8

Design point:

Transparent distribution is problematic

Remote operations have high latency; local ones
do not.

Transferring large data structures locally is done
by pointer copying; remote transfer requires
much more work.

Remote systems/links may fail, but concurrent
languages do not provide a model these kinds of
failures.

9

Extended rendezvous

Some languages provide request/reply as the
communication mechanism (Ada, Concurrent C).

10

Design point:

Extended rendezvous is too much

Extended rendezvous is asymmetric and does
not support data-flow networks.

It is easy to implement extended rendezvous on
top of message-passing.

11

Selective communication

In a language with blocking communication
operations (e.g., recv and blocking send), it is
useful to choose between a set of blocking
operations.

Vtty

Display

Keyboard

instream

outstreamClient

structure A =
 struct
 val x = 1

Can solve this by union types and extra threads; in
other examples, we may use special protocols.

12

Design point:

Selective communication is important

It reduces the number of threads required.

It promotes modularity, since specialized
protocols may not compose.

13

Design point:

Synchronous communication is powerful

More specifically, the combination of blocking send
and a choice operation provides a mechanism for
attaining 2-way common knowledge.

14

Design point:

Abstraction is crucial to writing/maintaining correct
software.

Unfortunately, most languages do not support
synchronization/communication abstractions.

15

Design point:

Negative acknowledgements promote modularity

Negative acknowledgements are a mechanism that
are unique to CML. They provide a way to implement
abortable protocols as abstractions.

16

Concurrent ML
Provides a uniform framework for
synchronization: events.

Event combinators for constructing abstract
protocols.

Collection of event constructors:

I-variables

M-variables

Mailboxes

Channels

Plus I/O, timeouts, thread join, ...
http://www.research.att.com/~jhr/sml/cml/

17

Basic CML features:

type thread_id
type 'a chan
type 'a event

val spawn : (unit -> unit) -> thread_id

val channel : unit -> 'a chan
val recv : 'a chan -> 'a
val send : ('a chan * 'a) -> unit

val recvEvt : 'a chan -> 'a event
val sendEvt : ('a chan * 'a) -> unit event

val choose : 'a event list -> 'a event
val guard : (unit -> 'a event) -> 'a event
val wrap : ('a event * ('a -> 'b)) -> 'b event
val withNack : (unit event -> 'a event) -> 'a event

val sync : 'a event -> 'a
val select : 'a event list -> 'a

18

CML Linda

The Linda family of languages use tuple spaces to
organize distributed computation.

A tuple space is a shared associative memory, with
three operations:

output adds a tuple.

input removes a tuple from the tuple space. The
tuple is selected by matching against a template.

read reads a tuple from the tuple space, without
removing it.

The CML interface is:

val output : (ts * tuple) -> unit
val inEvt : (ts * template) -> value list event
val rdEvt : (ts * template) -> value list event

19

CML Linda (continued ...)

There are two ways to implement a distributed tuple
space:

Read-all, write-one

Read-one, write-all

We choose read-all, write-one. In this organization, a
write operation goes to a single processor, while an
input or read operation must query all processors.

20

Server

Ne
tw

or
k

Output

Server
Output

Tuple Server
Remote

Tuple Server

Proxy
Tuple Server

Proxy

Proxy

Proxy

Local

Remote

Processor B

Processor A

Tuple Server
Local Local

Tuple Server

Local
Tuple Server

Clients

Clients

21

CML Linda (continued ...)

The input protocol is complicated:

1. The reader broadcasts the query to all
tuple-space servers.

2. Each server checks for a match; if it finds one, it
places a hold on the tuple and sends it to the
reader. Otherwise it remembers the request to
check against subsequent write operations.

3. The reader waits for a matching tuple. When it
receives a match, it sends an acknowledgement
to the source, and cancellation messages to the
others.

4. When a tuple server receives an
acknowledgement, it removes the tuple; when it
receives a cancellation it removes any hold or
queued request.

22

CML Linda (continued ...)

Here is an example of a successful input operation:

Proxy Proxy

recv recv

Tuple Server

select

input

Local

request

Remote

Client

Tuple Server

Remote
Tuple Server

multicast

Remote
Tuple Server

Tuple Server

Remote

Note that we must confirm that a client accepts a
tuple, before sending out the acknowledgement.

23

CML Linda (continued ...)

We use negative acknowledgements to cancel
requests, when the client chooses some other event.

Tuple Server
ProxyProxy

recv recv

abort

select

input

request

Remote

cancel

multicast

Remote

Local

Tuple Server

Tuple Server

Tuple Server

Remote
ev

Client

24

Conclusions:

Concurrent programming is hard, and concurrent
languages should be designed to provide as much
support as possible.

This means:

Avoid asynchronous access to shared state.

Provide strong synchronization guarantees.

Provide support for application specific
abstractions.

25

