
E s s e n t i a l s o f S t a n d a r d M L M o d u l e s

Mads Tofte

Department of Computer Science
University of Copenhagen

Abs t rac t . The following notes give an overview of Standard ML Mod-
ules system. 1
Part 1 gives an introduction to ML Modules aimed at the reader who
is familiar with a functional programming language but has little or no
experience with ML programming.
Part 2 is a half-day practical intended to give the reader an opportu-
nity to modify a small, but non-trivial piece of software using functors,
signatures and structures.

PART 1

1 Introduction

It is now more than ten years ago that David MacQueen made his proposal for
ML Modules[Mac84]. At the time, there was very little experience with large scale
programming in ML. At the time the Modules were formally defined (1987-1989),
there was still a certain amount of guesswork involved, still because of the limited
practical experience. Today, hundreds of thousands of lines of ML later, ML
programmers have a much clearer picture of what the most important aspects
of the Standard ML modules are. In the experience of the author, there are
certain features of the ML Modules system that are exploited again and again,
while others play a strictly secondary r61e. Moreover, these essential features are
actually surprisingly few in number and not hard to grasp. Finally, their scope
is not limited to ML; for example, they are completely independent of the fact
that ML is a strict (rather than an lazy) language. The purpose of these notes
is to focus on these few essentials of ML Modules.

1 By and large, these notes are consistent with The Definition of Standard
ML[MTH90], as regards syntax, semantics and terminology. As it happens, the Def-
inition is currently being revised, primarily in order to simplify the modules system.
In these notes we concentrate on those aspects of the ML modules that will still
be present in the revised language. For brevity, we refer to the old and the revised
languages as SML 90 and SML 96, respectively, when the distinction matters.

The exercises in the first part can be solved without the use of a computer; the tuto-
rial assumes that an SML 90 implementation with the Edinburgh Library preloaded
is available. The ML code for Part 2 is available from the author's World-Wide Web
home page.

209

2 P a c k a g i n g C o d e u s i n g S t r u c t u r e s

In programming languages the term module means a packaged program unit
which can be combined with other modules to form a (possibly large) software
system. The adjective modular is often used as a positive term, implying tidy
design and good software hygiene.

Many functional languages already have a concept of type which is strong
enough to allow the orderly organisation of values. For example, it is much easier
to program with binary trees, if one uses recursive datatypes than if one uses
pointers to represent trees. Also, function composition is a way of organising
computations (each function is regarded as a computation); type checking can
catch meaningless combinations of computations at compile time. Moreover,
since the composition of two functions is again a function, which is itself a value,
functional languages make it possible to "compute with computations" in an
orderly manner. So why add language constructs for modularity?

The reason is that in a typed language one wants an orderly organisation
not just of values but also of types. There is a useful distinction between a
value and its type; the type is usually much simpler and reveals less detail
than the value. Similarly, there is a useful distinction between a particular type
(i.e., a choice of data type) and the specification that a type exist and have
a certain arity, say. Both forms of information hiding are important in typed
languages. In ML, values cannot contain types, so one cannot simply build a
record containing a datatype together with some operations on that type. The
separation of values and types makes static type checking possible. However,
the price for this separation is that one needs separate language constructs for
packaging types and values that belong together.

ML allows the programmer to package a collection of types and values into
a single unit, called a structure. The corresponding notion in ADA is package.

Here is a structure, called IntFn, which implements finite maps on integers:

s t r u c t u r e IntFn =
s truct

except ion Apply
type 'a intmap = in t -> 'a
fun e i = r a i s e Apply
:fun app f x = f x
fun extend (a ,b) f i =
if i=a then b else f i

end;

Having declared IntFn, we can refer to the types and values it contains using
qualified identifiers. A qualified identifier starts with a structure name, then
comes a period and at the end is a normal identifier.

210

v a l a: bool In tFn . in tmap = IntFn.e
v a l b = In tFn .ex tend (3, true) a
v a l c = IntFn.app b 3
v a l d = In tFn.app b 3;

(The type constraint ": bool In tFn. in tmap" isn ' t really needed, but it illustrates
tha t one can refer to types as well as values.)

Exercise 1. What are the types of b, c and d?

Below is a signature which specifies the types and values of In tFn without
revealing what they are:

s i g n a t u r e I N T M A P =
s i g

e x c e p t i o n Apply
t y p e 'a in tmap
v a l e: 'a in tmap
v a l app: 'a i n t m a p - > i n t - > 'a
v a l extend: int*'a ->

'a in tmap -> 'a in tmap
end ;

To sum up, a collection of values and types can be packaged into a structure.
In the above example, we had just one type in the structure; it is common to
introduce several types in a single structure. A signature is a "structure type",
i.e., it classifies structures in analogy with the fact tha t types classify values.

3 U s i n g S i g n a t u r e s a s I n t e r f a c e s

In typed programming languages, a type checker can ensure that no value is
used in a way which conflicts with its type. The same idea is clearly useful at
the level of modules. For example, it should be a " type error" to place a structure
M in some context where one actually needs a module which implements more
operations than M does.

When one declares a structure in ML, one can get the compiler to check
whether the structure matches a given signature. For example, if we assume
that we have first declared signature I N T M A P as above, but not yet IntFn, we
can declare In tFn as follows:

211

s t r u c t u r e IntFn: I N T M A P =
s t r u c t
exception Apply
t ype 'a intmap = in t -> 'a
fun e i = r a i s e Apply
fun app f x = f x
:fun extend (a ,b) f i =
if i=a then b else f i

end ;

The only change is in the first line: the ": I N T M A P " is an example of a signature
constraint; it makes the compiler check whether the declared structure really
matches the signature. Roughly speaking, a structure matches a signature if it
has all the types and values specified in the signature. In addition, the types in
the structure must have the arities specified in the signature and the values in
the structure must have the types specified in the signature. (The structure is
allowed to have more values and types than the ones specified by the signature.)

If the structure does not match the signature, an error message is printed.
Otherwise, the result of the constrained declaration is that the structure identi-
fier (here IntFn) is bound to a structure which has precisely the values and types
specified by the signature (here I N T M A P) . In other words, after the declaration,
one can only refer to those components of the structure that are specified in the
signature.

However, a signature constraint does not hide the identity of the types that
appear both in the structure and in the signature. Hence, after the above dec-
laration, one can exploit the fact that IntFn really is a function type, so one is
allowed to write for example:

va l x = IntFn.e 5;

(This will raise an exception, when evaluated, but the declaration is well-typed.)
Contrast this with the politically correct:

va l y = IntFn.app IntFn.e 5;

which is well-typed even if we only assume the type information which is given
in the signature.

The form of matching just described is called transparent matching, since
the true identity of types shines through the signature constraint. SML '96 also
provides opaque matching, which results in a structure which has precisely the
type information and components which are specified in the signature. It uses
the keyword : > (read: coerced to) instead of :, so one can write for example:

212

s t r u c t u r e IntFn: > I N T M A P =
struct

e x c e p t i o n Apply
t y p e 'a intmap = in t -> 'a
fun e i = r a i s e Apply
fun app f x= f x
fun extend (a, b) f i =
if i=a then b else f i

end;

after which the declaration of x above would be illegal, whereas the declaration
of y would still be legal.

4 An Analogy with Mathematics

The distinction we made in Section 2 (namely between, on the one hand, actual
types and values and, on the other hand, the specification of types and values) is
not in any way new. Indeed, mathematicians have been doing this sort of thing
for centuries. A mathematician introduces the concept of a group roughly like
this:

D e f i n i t i o n 2. A group (G, *) is a set G equipped with a composition �9 : G x G --+
G which is associative, has a neutral element and satisfies that every element of
G has an inverse.

Shortly after, one might find the following example:

The integers (Z, +) is a group.

The point is that the definition of groups is independent of which set and which
composition is chosen. To specify groups in SML, one declares:

signature GROUP =
s i g

t ype G
v a l e : G
va l bullet: G * G - > G
va l inv: G - > G

end;

Admittedly, this specification would probably not satisfy a mathematician, since
it does not specify the required properties of e, bullet and inv. However, the
advantage of providing only relatively simple forms of specifications is that it is
decidable whether a given structure matches a given signature - - this is highly

213

desirable when working with many modules and specifications. The group of
integers is now declared as follows, where - means unary minus:

s t r u c t u r e Z : GROUP =
struct

type G = int
v a l e = 0
fun bullet(n: in t ,m) = n+m
:~un inv(n: int) = -n

end;

5 Parameter i sed Modules

The reason group theory is group theory is that it applies to all groups. The
mathemat ic ians do not re-invent group theory each t ime a new group comes
along. Using Compute r Science jargon, the definition of groups is the interface
to group theory. If we want to write code which works for all groups, it suffices
to see how mathemat ic ians refer to groups without considering a part icular one.
They simply say: "Let (G, .) be a group". This is a very compact way of saying
several things at once. First, the s ta tement fixes at tention on a hypothetical
group and gives it a name. Second, it says that , until further notice, all we may
assume about (G, .) is that it is a group. It is an elementary logical mistake
to use the members of G as integers, say, unless the set G has explicitly been
constrained to be the integers.

The way to write an ML module which works for any group is to use a
functor, e.g.,

f u n c t o r Sq(Gr: GROUP) : GROUP=
struct

t y p e G = Gr.G* Gr.G
v a l e =(Gr.e, Gr.e)
fun bullet((a l , bl) , (a2, b2)) =

(Gr.bullet(a l , a2) ,
Gr. bullet(b1, b2))

fun inv(a,b) = (Gr.inv a, Gr.inv b)
end;

Here Sq is the name of the functor, Gr is the formal parameter, the first occur-
rence of GRO UP is the parameter signature, the r ightmost occurrence of GRO UP
is the result signature and the structure expression s t r u c t . .. end is the body of
the functor. Inside the body of the functor, all we may assume about structure
Gr is tha t it matches the parameter signature. The scope of the specification

214

of Gr is the result s ignature and the functor body. So in general, a functor
declarat ion

functor f (X : Z) : L 'l = body

is the ML p rog ramm e r ' s way of saying: "let X be a s t ructure which matches Z".
If we want to write a module which works only for groups over the integers

we have to constrain the type Gr.G to int and this has to be done "up front",
when we in t roduce Gr as a formal pa ramete r (i.e., the b o d y of the functor is
not allowed to impose type equalities which are not specified in the pa ramete r
signatures). In SML 90 one uses a type sharing constraint in the signature:

f u n c t o r Try(Gr:
sig

t y p e G
s h a r i n g t y p e G = int
v a l e: G
v a l bullet: G*G->G
val inv: g - > g

end) =

struct

v a l x = Gr.inv(Gr.bullet(7, 9))
end;

In SML 96 one can express the same th ing more briefly using a where type

qualifier on the s ignature GROUP:

f u n c t o r Try(Gr: GROUP
where t y p e G = int) =

struct

v a l x = Gr.inv(Gr.bullet(7, 9))
end;

or by using a type abbreviation in the signature:

f u n c t o r Try(Gr:
s i t

t y p e G = int
v a l e: G
v a l bullet: G*G->G
v a l inv: G-> G

end) =

struct

v a l x = Gr.inv(Gr.bullet(7, 9))
end ;

215

Since the above functors are all closed - - in the sense that they contain no free
identifiers apart from identifiers which are available initially (e.g., int and +)
- - it is possible to compile the functors. When a functor has been successfully
compiled, one knows that the body of the functor is well-typed assuming only
what the parameter signature reveals about the parameter. Thus the parameter
signature is not merely a comment about what structures the functor needs; it
is a guarantee that whenever one provides an actual structure that matches the
parameter signature, one can combine the functor and the argument structure
without violating the type soundness of the functor body.

The result signature in a functor declaration is optional. Also, in SML 96 one
can choose between specifying the result signature with opaque and transparent
matching. (SML 90 provides only transparent matching.)

6 F u n c t o r A p p l i c a t i o n

The way one uses a functor is to apply it to an actual argument which matches
the parameter signature, e.g.,

s t r u c t u r e S = Try(Z)

Hence combining modules is akin to combination (i.e., application) in the A-
calculus: a functor can be regarded as a map from structures to structures. In
a functor application (Try(Z)) it is first checked that the argument structure
(Z) matches the parameter signature (GROUP) of the functor (Try). If the
match fails, an error message is printed. Otherwise, the body of the functor is
evaluated, resulting in a structure. In our example, this structure is then bound
to a structure identifier (S) but that is not part of the functor application per
Be.

Type information is propagated through functor application. For example,
consider the application

s t r u c t u r e SqZ = Sq(Z) ;

After the declaration we have SqZ.G = int , int, obtained as the result of
simplifying the declaration t ype G = Gr. G * Gr. G (which is part of the body
of Sq), using that Gr = Z.

If the functor has been declared using an opaque result signature, the result
structure will only have the type equalities which are specified in the result
signature. Thus the equality SqZ. G = int �9 int would not hold if we had used
:> instead of : in the declaration of Sq. If one prefers using opaque signature
constraints, one can retrieve the equality by imposing a where t y p e qualification
on the result signature when the functor is declared:

216

f u n c t o r Sq(Gr: G R O U P) : > GROUP
where t y p e G = G r . G * Gr.G =

struct

type G = Gr. G * Gr. G

va l e =(Gr.e, Gr.e)
fun bullet((a l , bl) , (a2, b2)) =

(Gr.bullet(al , a2) ,
Gr.bullet(b l , b2))

fun inv(a ,b) = (Gr. inv a, Gr.inv b)
end;

7 Building Systems

Suppose we want to create a system consisting of three structures, A, B and C,
where B refers to A and C refers to both A and B. The situation can be drawn
as follows:

C

Suppose that A, B and C have to match signatures SIGA, S IGB and SIGC,
respectively. The simplest way to construct the system is to have three structure
declarations after each other:

s t r u c t u r e A: SIGA = strexPA ;
s t r u c t u r e B: SIGB = strexps ;
s t r u c t u r e C: SIGC = strexpc ;

where strexpA , strexPB and strexPc are appropriate structure expressions, such
that strexps contains free occurrences of qualified identifiers starting with A
and strexpc contains free occurrences of qualified identifiers starting with A or
B. However, this organisation does not give a clear picture of the dependencies
between the three modules. (To see whether C depends on A, one has to scan
the entire declaration of C.)

To make the dependencies explicit (and to facilitate separate compilation)
one can use functors instead:

217

f u n c t o r m k A () = strexp A ;

f u n c t o r m k B (A : S I G A) : S I G B =

strexPB ;

f u n c t o r m k C (
s t r u c t u r e A: S I G A

s t r u c t u r e B: S I G B) : S I G C =

s t rexpc ;

s t r u c t u r e A = m k A () ;
s t r u c t u r e B = m k B (A) ;
s t r u c t u r e C = m k C (

s t r u c t u r e A = A
structure B = B);

Incidentally, this example illustrates how one writes nullary functors and functors
with more than one structure parameter ; in the lat ter case, one has to put the
keyword s t r u c t u r e in front of each structure parameter , and this is repeated
when the functor is applied.

The signature S I G B may specify a type which really stems from S I G A (an
example will be given below). I t may then be necessary for m k C to assume tha t
the two types A . t or B . t are actually the same type. For example, consider: 2

s i g n a t u r e S I G A =

s i g
t y p e t
v a l mk: i n~> t

v a l p: t , t - > t

end;

s i g n a t u r e S I G B =

s i g
t y p e b
v a l bO: b
t y p e t
v a l f: b - > t

end;

2 In SML 96, the example has to be modified slightly, since chr and ord are changing
type.

218

signature SIGC =

sig

type t

val test: t
end ;

f u n c t o r m k A () : S IGA =
struct

type t = string
fun ink(i: int) : string =

chr((i + ord " a ") m o d 128)
f u n p (n , m : s t r i n g) = n^m (*

end;
m e a n s s t r ing c onc a t e na t i on *)

f u n c t o r m k B (A : S I G A) : S I G B =
struct

type b = string
v a l bO = " abc"
t y p e t = A . t
f u n f (s : string) = A . m k (s i z e s)

end ;

f u n c t o r m k C (
s t r u c t u r e A : SIGA
s t r u c t u r e]9: SIGB) : S I G C =

struct

type t = A.t

val test = A.p(A.mk 16,A.p(A.mk 4,B.f(B.bO)))

end ;

s t r u c t u r e A = m k A () ;
s t r u c t u r e B = m k B (A) ;
s t r u c t u r e C = m k C (

s t r u c t u r e A = A
s t r u c t u r e B = B) ;

T h e dec l a r a t i ons up to and inc lud ing m k B are all fine; bu t the d e c l a r a t i o n of
m k C is i l l - typed . Indeed, the ML K i t compla ins :

A.p(A.mk 16,A.p(h.mk 4,B.f(B.bO)))

Type clash,
operand suggests operator type: t * t->t

but I found operator type: t * t<162>->t

219

The mysterious <162> in the last line indicates that the type differs from the
corresponding type in the line above. Indeed, B. f (B. b0) has type B . t and A. mk
4 has type A . t and nowhere did we state that those two types be the same (as
is required by the type of A.p). In some cases such a type error is an indication
that the functor is wrong, i.e., that one has confused two types. But in this case,
we really want to say that A . t and B . t are the same type, which we achieve by
inserting a type sharing constraint in the start of mkC:

f u n c t o r m k C (

s t r u c t u r e A : S I G A

s t r u c t u r e B: S I G B

s h a r i n g t y p e A . t = B . t) : S I G C =

�9 . . as b e f o r e . . .

After this correction, the declaration of m k C is well-typed. Moreover, the applica-
tion of m k C is well-typed: it is automatically checked that the sharing constraint
is satisfied, which it is with A . t = B . t = s t r ing . The result is a system which
consists of three structures, as depicted earlier.

E x e r c i s e 3 . What is the value of C.tes t?

The preceding examples (excluding the SML 96 examples) can be found in the
file examples , sml . To run them, start an ML session in the same directory as
the examples file. Then type: use "examples . aml" ;.

220

PART 2: P R A C T I C A L

8 Implement ing a Polymorphic Type-Checker

The purpose of this practical is to allow you to work through a slightly larger
example of program development using ML modules. You are given a collection
of modules that implement a type checker and interpreter for Mini ML, a tiny
subset of the SML Core language.

The system can be executed and you can modify and extend it provided you
have access to an implementat ion and to the files listed in Appendix B. We pro-
vide a parse functor which can parse a Mini ML source expression (represented
as a string) into an abstract syntax tree. The rest of the interpreter works on
abstract syntax trees. Unlike most real ML systems, the Mini ML system is an
interpreted system. Your job will be to work on the polymorphic type checker.

Here is the grammar for Mini ML:

exp : : = exp + exp
e x p - exp
exp * exp
true

false

exp = exp
i f exp t h e n exp e l s e exp
exp :: exp
[expl , ". , exp.] (n > O)

let x = exp in exp end

let rec x = exp in exp end

x

fnx => exp

exp (exp) (function application)
n (natural numbers)
(exp)

The abstract syntax of Mini ML is defined as a data type in the signature
EXPRESSION.

Exercise 4. Find and read this signature. What is the constructor corresponding
to l e t expressions?

The interpreter uses a typechecker to check the validity of input expressions and
an evaluator to evaluate them. Initially, the typechecker and evaluator handle
only a tiny subset of Mini ML.

The typechecker and the evaluator can be developed independently as long
as you do not change the signatures. The development of the typechecker and

221

the evaluator need not be in step. You can disable either by assigning false to
one of the references t c and e v a l .

The source of the bare interpreter is in Appendix A. An overview of how to
run the systems is provided in Appendix B.

Exercise 5. Find and read the signature of the interpreter (it is called INTER-
PRETER).

We program with signatures and functors only. After the signatures, which we
shall not yet study, the first functor is the interpreter itself.

Exercise 6. Find this functor. Find the application of Ty.prType. Find i t 's type.
Wha t do you think Ty.prType is supposed to do? Wha t is the type of abstsyn?
What do you think the evaluator is supposed to do when asked to evaluate
something which has not yet been implemented?

We shall now describe Version 1, the bare typechecker, and then proceed to the
extensions.

9 Version 1: The bare Typechecker

The first version is just able to type check integer constants and +. As signature
TYPE reveals, the type Type of types is abstract (in the sense tha t the construc-
tors are hidden), but there are functions we can use to build basic types and
decompose them. unTypeInt is one of the latter; it is supposed to raise exception
Type if applied to any Mini ML type different from the Mini ML integer type. 3
This is a common way of hiding implementat ion details and it might be helpful
to take a look at functor Type, which can produce a structure which matches
the signature Type. 4

As revealed by the signature TYPECHECKER, the typechecker is going to
depend on the abstract syntax and a Type structure. Notice tha t it is possible
to specify structures in signatures as well as values and types. 5 Similarly, it is
possible to declare structures inside structures; such structures are called sub-
structures. 6 As you can see from the declaration of functor TypeChecker, all the
typechecker knows about the implementat ion of types is what is specified by the
signature TYPE. This allows us to experiment with the implementa t ion of types
to obtain greater efficiency without changing the typechecker, as we shall see in
the later stages.

3 In SML it is legal to use the same identifier as an exception constructor and a
type constructor - - the position of the identifier occurrence uniquely determines the
identifier class.

4 It is also legal to use the same identifier as a signature identifier, a functor identi-
fier and a structure identifier - - the position of the identifier occurrence uniquely
determines the identifier class.

5 However, it is not possible to specify functors or signatures in signatures.
However, it is not possible to declare functors or signatures inside structures.

222

Exercise 7. Functor TypeChecker is hostile to any expression which is not an
integer constant or a sum expression. Modify the typechecker to handle t r u e ,
f a l s e , and multiplication of integers. Make sure the revised functor compiles
and runs. Assuming that your revised version of Appendix A is stored in file
myversionl, sml, type:

map use ["myversionl.sml", "parser.sml", "buildl.sml"] ;

Once the parser has been compiled once, you can omit it from the list. However,
you have to compile the build file after each modification of your code, since the
build file contains all the functor applications that build the system.

1 0 V e r s i o n 2: A d d i n g l i s t s a n d p o l y m o r p h i s m

The first extension is to implement the type checking of lists. In Version 1 the
type of an expression could be inferred either directly (as in the case of t r u e and
f a l s e) , or from the type of the subexpressions (as in the case of the ari thmetic
operations). When we introduce list, this is no longer the case. For example,
consider the expression

if ([] = [9]) then 5 else 7

Suppose we want to type check ([] = [9]) by first type checking the left subex-
pression [], then the right subexpression [93 and finally checking that the left
and right-hand sides are of the same type before returning the type bool . The
problem now is that when we t ry to type check [3 we cannot know that this
empty list is supposed to be an integer list. The typechecker therefore just as-
cribes the type ' a l i s t to [3, where ' a i s a (Mini ML) type variable. The [9] of
course turns out to be an i n t l i s t . The typechecker now unifies the two types
' a l i s t and i n t l i s t resulting in the substitution that maps ' a to i n t . Hence
the type of the expression [] depends not just on the expression itself, but also
on the context of the expression. The context can force the type inferred for the
expression to become more specific.

To implement all this, we first extend the TYPE signature and introduce a
new signature, UNIFY, as shown in Figure 1.

The nice thing is that we can extend the typechecker without knowing any-
thing about the inner workings of unification, simply by including a formal pa-
rameter of signature UNIFY in the typechecker functor. The complete functor
is in the file v e r s i o n i , sral, but the most important bits are shown in Figure 2.

Here we see a new form of sharing constraint, namely sharing between struc-
tures. In SML 90 this specifies tha t when the functor is applied to actual struc-
tures Ty and Unify, it must be the case that Ty is the same substructure as the
Type-substructure of Unify. This of course implies that types that are specified
in both Ty and Unify. Type are shared as well, e.g., we have the type equality
Ty. Type = Unify. Type. Type. In SML 96, structure sharing has a weaker seman-
tics: there is no notion of identity of structure; structure sharing constraints are
still allowed, but they just abbreviate a sequence of type sharing constraints.

223

signature TYPE =

si6
eqtype tyvar
val freshTyvar: unit -> tyvar
(*... components omitted ... *)
va l mkTypeTyvar: tyvar-> Type

and un Type Tyvar: Type-> tyvar

val mkTypeList: Type-> Type
and unTypeList: Type -> Type

type subst
val Id: subst
(*the identify substitution; *)

val mkSubst: tyvar* Type-> subst
(*make singleton substitution; *)

val on : subst * Type-> Type
(*application *)

val pr Type : Type-> string
(*printing *)

end

s igna tu re UNIFY=
s ig

s t r u c t u r e Type: TYPE
exception Notlmplemented of string
except ion Unify
val unify: Type.Type* Type.Type->

Type.subst
end;

Fig. 1. Signatures TYPE and UNIFY

We also have to extend the Type functor to meet the enriched T Y P E signa-
ture, see Figure 3.

Exercise 8. Extend the typechecker of Version 2 to handle equality.

224

f u n c t o r TypeChecker
((*.. . *)

s t r u c t u r e Ty: T Y P E
s t r u c t u r e Unify: U N I F Y
sharing Unify. Type = Ty

)=

s t r u c t
inf ix on
val (op on) = Ty.on
(*. . . *)

fun tc (exp: Ex.Expression) : Ty. Type=
(c a s e exp of

(*.. . *)

[Ex.LISTexpr [] =>
l e t v a l new = Ty.fresh Tyvar()
i n Ty.mkTypeList(

Ty. mk Type Tyvar new)
end

] Ex .CONSexpr (e l , e2) =>
l e t

v a l t l = tc el
val t2= tc e2
v a l new = Ty.freshTyvar ()
v a l newt=- Ty.mkTypeTyvar new
va l t2 '= Ty.mkTypeList newt
v a l $1 =

Unify.unify(t2, t2')
h a n d l e Unify. Unify =>
r a i s e TypeError(e2,

"expected list type")

v a l $2 =
Unify.unify(S1 on newt,

$1 on t l)
h a n d l e Unify. Unify =>
r a i s e TypeError(exp,

"element and list have different types")
in $2 on ($1 on t2)
end

) h a n d l e Unify.NotImplemented msg -->
r a i s e NotImplemented msg

end ; (* TypeChecker*)

F i g . 2. T h e TypeCheckerfunctor

225

f u n c t o r Type() : T Y P E =
s t r u c t

t y p e tyvar = int
v a l]resh Tyvar =

l e t v a l r= re] 0
i n f n () = > (r : = / r + 1 ; /r)
end

d a t a t y e e Type = I N T
] BOOL
I L I S T of Type
I T Y V A R of tyvar

f u n mkTypeTyvar tv = T Y V A R tv
and u n T y p e T y v a r (T Y V A R tv) = tv

] unTypeTyvar_ = r a i s e Type
f u n mk TypeList(t)= L I S T t
and unTypeL i s t (L IST t)= t

i unTypeList(_)= r a i s e Type

t y p e subst= Type-> Type

f u n Id x-- x

f u n mkSubst(tv , ty)=
l e t

f u n s u (T Y V A R tv')=
i f tv=tv' t h e n ty
e l s e T Y V A R tv '

I su (INT) = I N T
] su (BOOL)= BOOL
I s u (L I S T ty') =

L I S T (su ty')
i n su
end

fun o n (S , t) = S(t)

f u n prType = (*... *)
end ;

F i g . 3. T h e Type f u n c t o r

226

11 Vers ion 3: A different i m p l e m e n t a t i o n of t y p e s

Version 3 arises from Version 2 by replacing the Type functor by a different
implementation of types. Instead of representing substitutions as functions, Ver-
sion 3 implements type variables by references (pointers) so that it can perform
substitutions very efficiently, by assignments. Here is an outline of the code: 7

f u n c t o r ImpType() : T Y P E =
struct

d a t a t y p e 'a option =
N O N E

I S O M E of 'a
d a t a t y p e Type =

I N T I B O O L
I L I S T of Type
I T Y V A R of tyvar
w i t h t y p e tyvar =

Type option ref
fun fresh Tyvar() = ref (N O N E)
e x c e p t i o n Type
fun rnkTypeInt() = I N T
and un TypeInt(I N T) = ()

I (*... *)
I unTypeInt(T Y V A R (r e f (S O M E t)))=

un TypeInt t
I unTypeInt _ = r a i s e Type

(*...*)
t y p e subst = unit
va l Id= () ;
e x c e p t i o n MkSubst;
fun mkSubst(tv, ty) =

c a s e tv o f

t e l (N O N E) => tv:= (S O M E ty)
I r e f (S O M E t) => r a i s e MkSubst

fun on(S , t)= t
fun prType = (*.. . *)

end ;

Exercise 9. You will find the prType operation in ImpType in Version 3 rather
unsatisfactory; make modifications to correct this. (Hint: do not change anything
but the functor.)

7 The withtype construct declares a type abbreviation within a datatype declaration.

227

1 2 V e r s i o n 4: I n t r o d u c i n g v a r i a b l e s a n d l e t

We now extend Version 3 by implementing the type checking of l e t expressions
and of identifiers.

The typechecker function t c now has to take two arguments,

tc(TE, e)

where e is an expression and TE is a type environment, which maps variables
occurring free in e to type schemes. The definition of what a type scheme is will
be given below; for now it suffices to know that every type can be regarded as a
type scheme.

To take an example, if TE maps x to i n t and y to i n t , then tc will deduce
the Mini ML type i n t for the expression x+y. However, if TE mapped y to bool ,
there would be a type error.

The fact tha t we can bind variables to expressions whose types have been
inferred to contain type variables means that we get type variables in the type
environment. For instance, to type check

let x = [] in 4 :: x end

we first check [] yielding the type ' a l l i s t , say. Then we bind x to the type
scheme V ' a l . ' a l l i s t . Here the binding V ' a l of ' a l indicates tha t when we
look up the the type of x in the type environment, we return a type obtained
from the type scheme V ' a l . ' a l l i s t by instantiat ing the bound variables (here
just ' a l) by fresh type variables. In our example, when we look up x in the type
environment during the checking of 4 : : x, we instantiate ' a l to a fresh type
variable ' a2 , say, yielding the type ' a 2 l i s t for x. Thus we get to unify i n t
l i s t against ' a 2 l i s t , yielding the substi tution of i n t for ' a2 .

Throughout the body of the l e t , x will be bound to V ' a l . ' a l l i s t in the
type environment. Since we take a fresh instance of this type scheme each t ime
we look up x, we can use x both as an i n t l i s t and as an i n t l i s t l i s t , say:

l e t x = [] in (4 : : x) : : x end

ExerciselO. Assuming tha t you instantiate the bound ' a l to ' a 3 when you
meet the last occurrence of x, what two types should be unified, and what is the
resulting substitution on ' a3 ?

In ML, a type scheme always takes the form Va 1 -..c~n.v, (n ~ 0), where
a l , . . . , an are type variables and r is a type not containing quantifiers. In the
f ragment of Mini ML considered so far, all type schemes inferred by the algori thm
will be closed (i.e., any type variable occurring in r is amongst the a l , . . . , am),
but when one introduces functions and application, this no longer is the case.

Exercise 11. Extend the type checker (Version 4) to handle conditionals and
equality.

228

Exercise 12 For the extra keen. Extend Version 4 to cope with lambda abstrac-
tion (fn) and application. First, you have to introduce arrow types with con-
structors and destructors. Then you have to change the type of c l o s e so that it
takes two arguments, namely a type environment and a type. It should return
the type scheme that is obtained by quantifying all the type variables that occur
in the type but do not occur free in the type environment.

Then you can modify the type checker. When you type check a lambda
abstraction, you just bind the formal parameter to the trivial type scheme which
is just a fresh type variable (no quantified variables). Thus the type environment
can now contain type schemes with free type variables.

An application t c (T E , e) now yields two arguments, namely a type t and
a substitution S; the idea is that if you apply the substitution S to the type
environment TE, which now can contain free type variables, the expression e
has the type t. When an expression consists of more than one subexpression,
the type environment gradually becomes more and more specific by applying
the substitutions produced by the checking of the subexpressions one by one.
Moreover, the substitution returned from the whole expression is the composition
of these individual substitutions. (You have to extend the T Y P E signature (and
the Type functor) with composition of substitutions.

Finally, you can extend the unification algorithm to cope with arrow types.
(This will also use composition of substitutions.)

Exercise 13. Finally, extend type type checker (Version 4) to handle recursive
functions. In l e t r e c f = el in e2 end, el must be a lambda abstraction and
the typing rule is

TE + {f ~+ v} ~-el : r
TE + { f r e2:

TE F l e t r e c f = el in e2 en d :~ "I

13 Acknowledgements

The parser and evaluator are due to Nick Rothwell.

14 Further Reading

The Definition of Standard ML[MTH90] defines Standard ML formally. It is ac-
companied by a Commentary[MT91]. Milner's report on the Core
Language[MilS4], MacQueen's modules proposal[Mac84] and Harper 's I /O pro-
posal were unified in[RHM86].

Several books on Computer Programming, using Standard ML as a pro-
gramming language, are available[kW87,Rea89,Pau91,Sta92,CMP93]. In addi-
tion, there are medium-length introductions[Har86,Tof89].

229

Compilation techniques are treated by Appel[App92]. In this note we have
used bits of The Edinburgh Standard ML Library[Bet91].

There is a large body of research papers related to ML, none of which we
will cite on this occasion.

R e f e r e n c e s

[App92]

[Ber91]

[CMP93]

[Har86]

[kW87]

[Mac84]

[Mi184]

[MT91]

[MTHg0]

[Pau91]

[Rea89]
[RUM86]

[Sta92]
[Tof89]

Andrew W. Appel. Compiling with Continuations. Cambridge University
Press, 1992.
Dave Berry. The Edinburgh SML Library. Technical Report ECS-LFCS-91-
148, Laboratory for Foundations of Computer Science, Department of Com-
puter Science, Edinburgh University, April 1991.
Chris Clarck Colin Myers and Ellen Poon. Programming with Standard ML.
Prentice Hall, 1993.
Robert Harper. Introduction to Standard ML. Technical Report ECS-LFCS-
86-14, Dept. of Computer Science, University of Edinburgh, 1986.
/~ke Wikstr6m. Functional Programming Using Standard ML. Series in Com-
puter Science. Prentice Hall, 1987.
D. MacQueen. Modules for Standard ML. In Conf. Rec. of the 1984 ACM
Syrup. on LISP and Functional Programming, pages 198-207, Aug. 1984.
Robin Milner. The Standard ML Core language. Technical Report CSR-
168-84, Dept. of Computer Science, University Of Edinburgh, October 1984.
Also in[RHM86].
Robin Milner and Mads Tofte. Commentary on Standard ML. MIT Press,
1991.
Robin Milner, Mads Torte, and Robert Harper. The Definition of Standard
ML. MIT Press, 1990.
Laurence C. Paulson. ML for the Working Programmer. Cambridge Univer-
sity Press, 1991.
C. Reade. Elements of Functional Programming. Addison-Wesley, 1989.
David MacQueen Robert Harper and Robin Milner. Standard ML. Techni-

cal Report ECS-LFCS-86-2, Dept. of Computer Science, University Of Edin-
burgh, March 1986.
Ryan Stansifer. ML Primer. Prentice Hall, 1992.
Mads Tofte. Four lectures on Standard ML. LFCS Report Series ECS-
LFCS-89-73, Laboratory for Foundations of Computer Science, Department
of Computer Science, Edinburgh University, Mayfield Rd., EH9 3JZ Edin-
burgh, U.K., March 1989.

