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Abs t rac t .  The following notes give an overview of Standard ML Mod- 
ules system. 1 
Part 1 gives an introduction to ML Modules aimed at the reader who 
is familiar with a functional programming language but has little or no 
experience with ML programming. 
Part 2 is a half-day practical intended to give the reader an opportu- 
nity to modify a small, but non-trivial piece of software using functors, 
signatures and structures. 

PART 1 

1 Introduction 

It is now more than ten years ago that  David MacQueen made his proposal for 
ML Modules[Mac84]. At the time, there was very little experience with large scale 
programming in ML. At the time the Modules were formally defined (1987-1989), 
there was still a certain amount  of guesswork involved, still because of the limited 
practical experience. Today, hundreds of thousands of lines of ML later, ML 
programmers have a much clearer picture of what the most important  aspects 
of the Standard ML modules are. In the experience of the author, there are 
certain features of the ML Modules system that  are exploited again and again, 
while others play a strictly secondary r61e. Moreover, these essential features are 
actually surprisingly few in number and not hard to grasp. Finally, their scope 
is not limited to ML; for example, they are completely independent of the fact 
that  ML is a strict (rather than an lazy) language. The purpose of these notes 
is to focus on these few essentials of ML Modules. 

1 By and large, these notes are consistent with The Definition of Standard 
ML[MTH90], as regards syntax, semantics and terminology. As it happens, the Def- 
inition is currently being revised, primarily in order to simplify the modules system. 
In these notes we concentrate on those aspects of the ML modules that will still 
be present in the revised language. For brevity, we refer to the old and the revised 
languages as SML 90 and SML 96, respectively, when the distinction matters. 

The exercises in the first part can be solved without the use of a computer; the tuto- 
rial assumes that an SML 90 implementation with the Edinburgh Library preloaded 
is available. The ML code for Part 2 is available from the author's World-Wide Web 
home page. 



209 

2 P a c k a g i n g  C o d e  u s i n g  S t r u c t u r e s  

In programming languages the term module means a packaged program unit 
which can be combined with other modules to form a (possibly large) software 
system. The adjective modular is often used as a positive term, implying tidy 
design and good software hygiene. 

Many functional languages already have a concept of type which is strong 
enough to allow the orderly organisation of values. For example, it is much easier 
to program with binary trees, if one uses recursive datatypes than if one uses 
pointers to represent trees. Also, function composition is a way of organising 
computations (each function is regarded as a computation); type checking can 
catch meaningless combinations of computations at compile time. Moreover, 
since the composition of two functions is again a function, which is itself a value, 
functional languages make it possible to "compute with computations" in an 
orderly manner. So why add language constructs for modularity? 

The reason is that in a typed language one wants an orderly organisation 
not just of values but also of types. There is a useful distinction between a 
value and its type; the type is usually much simpler and reveals less detail 
than the value. Similarly, there is a useful distinction between a particular type 
(i.e., a choice of data type) and the specification that a type exist and have 
a certain arity, say. Both forms of information hiding are important in typed 
languages. In ML, values cannot contain types, so one cannot simply build a 
record containing a datatype together with some operations on that type. The 
separation of values and types makes static type checking possible. However, 
the price for this separation is that one needs separate language constructs for 
packaging types and values that belong together. 

ML allows the programmer to package a collection of types and values into 
a single unit, called a structure. The corresponding notion in ADA is package. 

Here is a structure, called IntFn, which implements finite maps on integers: 

s t r u c t u r e  IntFn = 
s truct  

except ion Apply 
type 'a intmap = in t -> 'a 
fun e i = r a i s e  Apply 
:fun app f x = f x 
fun extend (a ,b)  f i = 
if i=a then b else f i 

end; 

Having declared IntFn, we can refer to the types and values it contains using 
qualified identifiers. A qualified identifier starts with a structure name, then 
comes a period and at the end is a normal identifier. 
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v a l  a: bool In tFn . in tmap  = IntFn.e  
v a l  b = In tFn .ex tend  (3,  true) a 
v a l c  = IntFn.app b 3 
v a l  d = In tFn.app b 3; 

(The type constraint ": bool In tFn. in tmap"  isn ' t  really needed, but it illustrates 
tha t  one can refer to types as well as values.) 

Exercise 1. What  are the types of b, c and d? 

Below is a signature which specifies the types and values of In tFn without 
revealing what  they are: 

s i g n a t u r e  I N T M A P  = 
s i g  

e x c e p t i o n  Apply  
t y p e  'a in tmap 
v a l  e: 'a in tmap 
v a l  app: 'a i n t m a p - >  i n t - >  'a 
v a l  extend: int*'a -> 

'a in tmap -> 'a in tmap 
end ; 

To sum up, a collection of values and types can be packaged into a structure. 
In the above example,  we had just  one type in the structure; it is common to 
introduce several types in a single structure. A signature is a "structure type",  
i.e., it classifies structures in analogy with the fact tha t  types classify values. 

3 U s i n g  S i g n a t u r e s  a s  I n t e r f a c e s  

In typed programming  languages, a type checker can ensure that  no value is 
used in a way which conflicts with its type. The same idea is clearly useful at 
the level of modules. For example,  it should be a " type  error" to place a structure 
M in some context where one actually needs a module which implements more 
operations than  M does. 

When one declares a structure in ML, one can get the compiler to check 
whether the structure matches a given signature. For example,  if we assume 
that  we have first declared signature I N T M A P  as above, but  not yet IntFn,  we 
can declare In tFn as follows: 
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s t r u c t u r e  IntFn: I N T M A P  = 
s t r u c t  
exception Apply 
t ype  'a intmap = in t ->  'a 
fun  e i = r a i s e  Apply 
fun  app f x = f x 
:fun extend (a ,b )  f i = 
if i=a then b else f i 

end ; 

The only change is in the first line: the ": I N T M A P "  is an example of a signature 
constraint; it makes the compiler check whether the declared structure really 
matches the signature. Roughly speaking, a structure matches a signature if it 
has all the types and values specified in the signature. In addition, the types in 
the structure must have the arities specified in the signature and the values in 
the structure must have the types specified in the signature. (The structure is 
allowed to have more values and types than the ones specified by the signature.) 

If the structure does not match the signature, an error message is printed. 
Otherwise, the result of the constrained declaration is that  the structure identi- 
fier (here IntFn) is bound to a structure which has precisely the values and types 
specified by the signature (here I N T M A P ) .  In other words, after the declaration, 
one can only refer to those components of the structure that  are specified in the 
signature. 

However, a signature constraint does not hide the identity of the types that  
appear both in the structure and in the signature. Hence, after the above dec- 
laration, one can exploit the fact that  IntFn really is a function type, so one is 
allowed to write for example: 

va l  x = IntFn.e 5; 

(This will raise an exception, when evaluated, but the declaration is well-typed.) 
Contrast this with the politically correct: 

va l  y = IntFn.app IntFn.e 5; 

which is well-typed even if we only assume the type information which is given 
in the signature. 

The form of matching just described is called transparent matching, since 
the true identity of types shines through the signature constraint. SML '96 also 
provides opaque matching, which results in a structure which has precisely the 
type information and components which are specified in the signature. It uses 
the keyword : > (read: coerced to) instead of :, so one can write for example: 
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s t r u c t u r e  IntFn: > I N T M A P  = 
struct 

e x c e p t i o n  Apply 
t y p e  'a intmap = in t ->  'a 
fun  e i = r a i s e  Apply 
fun  app f x=  f x 
fun  extend (a,  b) f i = 
if i=a then b else f i 

end; 

after which the declaration of x above would be illegal, whereas the declaration 
of y would still be legal. 

4 An Analogy with Mathematics  

The distinction we made in Section 2 (namely between, on the one hand, actual 
types and values and, on the other hand, the specification of types and values) is 
not in any way new. Indeed, mathematicians have been doing this sort of thing 
for centuries. A mathematician introduces the concept of a group roughly like 
this: 

D e f i n i t i o n  2. A group (G, *) is a set G equipped with a composition �9 : G x G --+ 
G which is associative, has a neutral element and satisfies that  every element of 
G has an inverse. 

Shortly after, one might find the following example: 

The integers (Z, +) is a group. 

The point is that  the definition of groups is independent of which set and which 
composition is chosen. To specify groups in SML, one declares: 

signature GROUP = 
s i g  

t ype  G 
v a l e  : G 
va l  bullet: G *  G - >  G 
va l  inv: G - >  G 

end; 

Admittedly, this specification would probably not satisfy a mathematician,  since 
it does not specify the required properties of e, bullet and inv. However, the 
advantage of providing only relatively simple forms of specifications is that  it is 
decidable whether a given structure matches a given signature - -  this is highly 
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desirable when working with many  modules and specifications. The group of 
integers is now declared as follows, where - means unary minus: 

s t r u c t u r e  Z : GROUP = 
struct 

type G = int 
v a l  e = 0 
fun  bullet(n: in t ,m)  = n+m 
:~un inv(n: int) = -n 

end; 

5 Parameter i sed  Modules  

The reason group theory is group theory is that  it applies to all groups. The 
mathemat ic ians  do not re-invent group theory each t ime a new group comes 
along. Using Compute r  Science jargon, the definition of groups is the interface 
to group theory. If  we want to write code which works for all groups, it suffices 
to see how mathemat ic ians  refer to groups without considering a part icular  one. 
They simply say: "Let (G, . )  be a group".  This is a very compact  way of saying 
several things at once. First, the s ta tement  fixes at tention on a hypothetical  
group and gives it a name. Second, it says that ,  until further notice, all we may  
assume about  (G, . )  is that  it is a group. It  is an elementary logical mistake 
to use the members  of G as integers, say, unless the set G has explicitly been 
constrained to be the integers. 

The way to write an ML module which works for any group is to use a 
functor, e.g., 

f u n c t o r  Sq(Gr: GROUP) : GROUP= 
struct 

t y p e  G = Gr.G* Gr.G 
v a l e  =( Gr.e, Gr.e) 
fun  bullet( ( a l ,  bl) , (a2, b2) ) = 

( Gr.bullet( a l ,  a2) , 
Gr. bullet(b1, b2) ) 

fun  inv(a,b)  = (Gr.inv a, Gr.inv b) 
end; 

Here Sq is the name of the functor, Gr is the formal parameter, the first occur- 
rence of GRO UP is the parameter signature, the r ightmost  occurrence of GRO UP 
is the result signature and the structure expression s t r u c t  . .. end is the body of 
the functor. Inside the body of the functor, all we may  assume about  structure 
Gr is tha t  it matches the parameter  signature. The scope of the specification 
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of Gr is the result s ignature and the functor  body. So in general, a functor  
declarat ion 

functor f ( X :  Z )  : L 'l = body 

is the ML p rog ramm e r ' s  way of  saying: "let X be a s t ructure  which matches  Z". 
If  we want  to write a module  which works only for groups over the integers 

we have to  constrain the type  Gr.G to  int and this has to be done "up front",  
when we in t roduce Gr as a formal  pa ramete r  (i.e., the b o d y  of  the functor  is 
not  allowed to  impose type  equalities which are not  specified in the pa ramete r  
signatures).  In SML 90 one uses a type sharing constraint in the signature:  

f u n c t o r  Try( Gr: 
sig 

t y p e  G 
s h a r i n g  t y p e  G = int 
v a l  e: G 
v a l  bullet: G*G->G 
val inv: g - >  g 

end) = 

struct 

v a l  x = Gr.inv( Gr.bullet( 7, 9)) 
end;  

In SML 96 one can express the same th ing more  briefly using a where type 

qualifier on the s ignature  GROUP: 

f u n c t o r  Try( Gr: GROUP 
where  t y p e  G = int) = 

struct 

v a l  x = Gr.inv( Gr.bullet( 7, 9) ) 
end;  

or by using a type abbreviation in the signature:  

f u n c t o r  Try( Gr: 
s i t  

t y p e  G = int 
v a l  e: G 
v a l  bullet: G*G->G 
v a l  inv: G-> G 

end) = 

struct 

v a l  x = Gr.inv( Gr.bullet( 7, 9)) 
end ; 
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Since the above functors are all closed - -  in the sense that  they contain no free 
identifiers apart  from identifiers which are available initially (e.g., int and +) 
- -  it is possible to compile the functors. When a functor has been successfully 
compiled, one knows that  the body of the functor is well-typed assuming only 
what the parameter  signature reveals about the parameter.  Thus the parameter  
signature is not merely a comment about what structures the functor needs; it 
is a guarantee that  whenever one provides an actual structure that  matches the 
parameter  signature, one can combine the functor and the argument structure 
without violating the type soundness of the functor body. 

The result signature in a functor declaration is optional. Also, in SML 96 one 
can choose between specifying the result signature with opaque and transparent 
matching. (SML 90 provides only transparent matching.) 

6 F u n c t o r  A p p l i c a t i o n  

The way one uses a functor is to apply it to an actual argument which matches 
the parameter  signature, e.g., 

s t r u c t u r e  S = Try(Z) 

Hence combining modules is akin to combination (i.e., application) in the A- 
calculus: a functor can be regarded as a map from structures to structures. In 
a functor application (Try(Z))  it is first checked that  the argument structure 
(Z) matches the parameter  signature (GROUP) of the functor (Try). If the 
match fails, an error message is printed. Otherwise, the body of the functor is 
evaluated, resulting in a structure. In our example, this structure is then bound 
to a structure identifier (S) but that  is not part  of the functor application per 
Be. 

Type information is propagated through functor application. For example, 
consider the application 

s t r u c t u r e  SqZ = Sq( Z) ; 

After the declaration we have SqZ.G = int , int, obtained as the result of 
simplifying the declaration t ype  G = Gr. G * Gr. G (which is part  of the body 
of Sq), using that  Gr = Z. 

If the functor has been declared using an opaque result signature, the result 
structure will only have the type equalities which are specified in the result 
signature. Thus the equality SqZ. G = int �9 int would not hold if we had used 
:> instead of : in the declaration of Sq. If one prefers using opaque signature 
constraints, one can retrieve the equality by imposing a where t y p e  qualification 
on the result signature when the functor is declared: 
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f u n c t o r  Sq( Gr: G R O U P ) : >  GROUP 
where t y p e  G = G r . G *  Gr.G = 

struct 

type G = Gr. G * Gr. G 

va l  e =( Gr.e, Gr.e) 
fun  bullet( ( a l ,  bl) , (a2, b2) ) = 

( Gr.bullet(al ,  a2) ,  
Gr.bullet( b l , b2) ) 

fun  inv(a ,b)  = (Gr. inv a, Gr.inv b) 
end; 

7 Building Systems 

Suppose we want to create a system consisting of three structures, A, B and C, 
where B refers to A and C refers to both A and B. The situation can be drawn 
as follows: 

C 

Suppose that  A, B and C have to match signatures SIGA, S IGB and SIGC, 
respectively. The simplest way to construct the system is to have three structure 
declarations after each other: 

s t r u c t u r e  A: SIGA = strexPA ; 
s t r u c t u r e  B: SIGB = strexps ; 
s t r u c t u r e  C: SIGC = strexpc ; 

where strexpA , strexPB and strexPc are appropriate structure expressions, such 
that  strexps contains free occurrences of qualified identifiers starting with A 
and strexpc contains free occurrences of qualified identifiers starting with A or 
B. However, this organisation does not give a clear picture of the dependencies 
between the three modules. (To see whether C depends on A, one has to scan 
the entire declaration of C.) 

To make the dependencies explicit (and to facilitate separate compilation) 
one can use functors instead: 
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f u n c t o r  m k A  ( )  = strexp A ; 

f u n c t o r  m k B ( A :  S I G A )  : S I G B  = 

strexPB ; 

f u n c t o r  m k C (  
s t r u c t u r e  A: S I G A  

s t r u c t u r e  B: S I G B ) : S I G C =  

s t rexpc ;  

s t r u c t u r e  A = m k A ( ) ;  
s t r u c t u r e  B = m k B ( A ) ;  
s t r u c t u r e  C = m k C (  

s t r u c t u r e  A = A 
structure B = B); 

Incidentally, this example illustrates how one writes nullary functors and functors 
with more than one structure parameter ;  in the lat ter  case, one has to put  the 
keyword s t r u c t u r e  in front of each structure parameter ,  and this is repeated 
when the functor is applied. 

The signature S I G B  may specify a type which really stems from S I G A  (an 
example will be given below). I t  may  then be necessary for m k C  to assume tha t  
the two types A . t  or B . t  are actually the same type. For example,  consider: 2 

s i g n a t u r e  S I G A  = 

s i g  
t y p e  t 
v a l  mk: i n~>  t 

v a l  p: t , t - >  t 

end; 

s i g n a t u r e  S I G B  = 

s i g  
t y p e  b 
v a l  bO: b 
t y p e  t 
v a l  f:  b - >  t 

end; 

2 In SML 96, the example has to be modified slightly, since chr and ord are changing 
type. 
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signature SIGC = 

sig 

type t 

val test: t 
end ;  

f u n c t o r  m k A ( ) :  S IGA = 
struct 

type t = string 
fun ink(i:  int) : string = 

chr( ( i + ord " a " ) m o d  128) 
f u n  p ( n , m : s t r i n g )  = n^m (* 

end; 
m e a n s  s t r ing  c onc a t e na t i on  *) 

f u n c t o r  m k B ( A :  S I G A )  : S I G B  = 
struct 

type b = string 
v a l  bO = " abc" 
t y p e  t = A . t  
f u n  f ( s :  string) = A . m k ( s i z e  s) 

end ;  

f u n c t o r  m k C (  
s t r u c t u r e  A :  SIGA 
s t r u c t u r e  ]9: SIGB)  : S I G C  = 

struct 

type t = A.t 

val test = A.p(A.mk 16,A.p(A.mk 4,B.f(B.bO) ) ) 

end ; 

s t r u c t u r e  A = m k A ( ) ;  
s t r u c t u r e  B = m k B ( A ) ;  
s t r u c t u r e  C = m k C (  

s t r u c t u r e  A = A 
s t r u c t u r e  B = B ) ;  

T h e  dec l a r a t i ons  up  to  and  inc lud ing  m k B  are  all fine; bu t  the  d e c l a r a t i o n  of  
m k C  is i l l - typed .  Indeed,  the  ML K i t  compla ins :  

A.p(A.mk 16,A.p(h.mk 4,B.f(B.bO))) 

Type clash, 
operand suggests operator type: t * t->t 

but I found operator type: t * t<162>->t 
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The mysterious <162> in the last line indicates that  the type differs from the 
corresponding type in the line above. Indeed, B. f (B. b0) has type B . t  and A. mk 
4 has type A . t  and nowhere did we state that  those two types be the same (as 
is required by the type of A.p). In some cases such a type error is an indication 
that  the functor is wrong, i.e., that  one has confused two types. But in this case, 
we really want to say that  A . t  and B . t  are the same type, which we achieve by 
inserting a type sharing constraint in the start  of mkC:  

f u n c t o r  m k C (  

s t r u c t u r e  A : S I G A  

s t r u c t u r e  B: S I G B  

s h a r i n g  t y p e  A . t  = B . t )  : S I G C  = 

�9 . .  as b e f o r e . . .  

After this correction, the declaration of m k C  is well-typed. Moreover, the applica- 
tion of m k C  is well-typed: it is automatically checked that  the sharing constraint 
is satisfied, which it is with A . t  = B . t  = s t r ing .  The result is a system which 
consists of three structures, as depicted earlier. 

E x e r c i s e 3 .  What  is the value of C.tes t?  

The preceding examples (excluding the SML 96 examples) can be found in the 
file examples ,  sml .  To run them, start  an ML session in the same directory as 
the examples file. Then type: use  "examples .  aml" ;. 
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PART 2: P R A C T I C A L  

8 Implement ing  a Polymorphic  Type-Checker  

The purpose of this practical is to allow you to work through a slightly larger 
example of program development using ML modules. You are given a collection 
of modules that  implement a type checker and interpreter for Mini ML, a tiny 
subset of the SML Core language. 

The system can be executed and you can modify and extend it provided you 
have access to an implementat ion and to the files listed in Appendix B. We pro- 
vide a parse functor which can parse a Mini ML source expression (represented 
as a string) into an abstract syntax tree. The rest of the interpreter works on 
abstract syntax trees. Unlike most real ML systems, the Mini ML system is an 
interpreted system. Your job will be to work on the polymorphic type checker. 

Here is the grammar for Mini ML: 

exp : : =  exp + exp 
e x p -  exp 
exp * exp 
true 

false 

exp = exp 
i f  exp t h e n  exp e l s e  exp 
exp :: exp 
[ expl , ". , exp.] (n > O) 

let x = exp in exp end 

let rec x = exp in exp end 

x 

fnx => exp 

exp ( exp ) (function application) 
n (natural numbers) 
(exp) 

The abstract syntax of Mini ML is defined as a data type in the signature 
EXPRESSION. 

Exercise 4. Find and read this signature. What  is the constructor corresponding 
to l e t  expressions? 

The interpreter uses a typechecker to check the validity of input expressions and 
an evaluator to evaluate them. Initially, the typechecker and evaluator handle 
only a tiny subset of Mini ML. 

The typechecker and the evaluator can be developed independently as long 
as you do not change the signatures. The development of the typechecker and 
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the evaluator need not be in step. You can disable either by assigning false to 
one of the references t c  and e v a l .  

The source of the bare interpreter is in Appendix A. An overview of how to 
run the systems is provided in Appendix B. 

Exercise 5. Find and read the signature of the interpreter (it is called INTER- 
PRETER). 

We program with signatures and functors only. After the signatures, which we 
shall not yet study, the first functor is the interpreter itself. 

Exercise 6. Find this functor. Find the application of Ty.prType. Find i t 's  type. 
Wha t  do you think Ty.prType is supposed to do? Wha t  is the type of abstsyn? 
What  do you think the evaluator is supposed to do when asked to evaluate 
something which has not yet been implemented? 

We shall now describe Version 1, the bare typechecker, and then proceed to the 
extensions. 

9 Version 1: The  bare Typechecker  

The first version is just  able to type check integer constants and +. As signature 
TYPE reveals, the type Type of types is abstract  (in the sense tha t  the construc- 
tors are hidden), but  there are functions we can use to build basic types and 
decompose them. unTypeInt is one of the latter; it is supposed to raise exception 
Type if applied to any Mini ML type different from the Mini ML integer type. 3 
This is a common way of hiding implementat ion details and it might  be helpful 
to take a look at functor Type, which can produce a structure which matches 
the signature Type. 4 

As revealed by the signature TYPECHECKER, the typechecker is going to 
depend on the abstract  syntax and a Type structure. Notice tha t  it is possible 
to specify structures in signatures as well as values and types. 5 Similarly, it is 
possible to declare structures inside structures; such structures are called sub- 
structures. 6 As you can see from the declaration of functor TypeChecker, all the 
typechecker knows about  the implementat ion of types is what  is specified by the 
signature TYPE. This allows us to experiment with the implementa t ion  of types 
to obtain greater efficiency without changing the typechecker, as we shall see in 
the later stages. 

3 In SML it is legal to use the same identifier as an exception constructor and a 
type constructor - -  the position of the identifier occurrence uniquely determines the 
identifier class. 

4 It is also legal to use the same identifier as a signature identifier, a functor identi- 
fier and a structure identifier - -  the position of the identifier occurrence uniquely 
determines the identifier class. 

5 However, it is not possible to specify functors or signatures in signatures. 
However, it is not possible to declare functors or signatures inside structures. 
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Exercise 7. Functor TypeChecker is hostile to any expression which is not an 
integer constant or a sum expression. Modify the typechecker to handle t r u e ,  
f a l s e ,  and multiplication of integers. Make sure the revised functor compiles 
and runs. Assuming that  your revised version of Appendix A is stored in file 
myversionl, sml, type: 

map use ["myversionl.sml", "parser.sml", "buildl.sml"] ; 

Once the parser has been compiled once, you can omit it from the list. However, 
you have to compile the build file after each modification of your code, since the 
build file contains all the functor applications that  build the system. 

1 0  V e r s i o n  2:  A d d i n g  l i s t s  a n d  p o l y m o r p h i s m  

The first extension is to implement the type checking of lists. In Version 1 the 
type of an expression could be inferred either directly (as in the case of t r u e  and 
f a l s e ) ,  or from the type of the subexpressions (as in the case of the ari thmetic 
operations). When we introduce list, this is no longer the case. For example, 
consider the expression 

if ([] = [9]) then 5 else 7 

Suppose we want to type check ( [] = [9] ) by first type checking the left subex- 
pression [],  then the right subexpression [93 and finally checking that  the left 
and right-hand sides are of the same type before returning the type bool .  The 
problem now is that  when we t ry  to type check [3 we cannot know that  this 
empty list is supposed to be an integer list. The typechecker therefore just  as- 
cribes the type ' a  l i s t  to [3, where ' a i s  a (Mini ML) type variable. The [9] of 
course turns out to be an i n t  l i s t .  The typechecker now unifies the two types 
' a  l i s t  and i n t  l i s t  resulting in the substitution that  maps ' a  to i n t .  Hence 
the type of the expression [] depends not just on the expression itself, but  also 
on the context of the expression. The context can force the type inferred for the 
expression to become more specific. 

To implement all this, we first extend the TYPE signature and introduce a 
new signature, UNIFY, as shown in Figure 1. 

The nice thing is that  we can extend the typechecker without knowing any- 
thing about the inner workings of unification, simply by including a formal pa- 
rameter  of signature UNIFY in the typechecker functor. The complete functor 
is in the file v e r s i o n i ,  sral, but  the most important  bits are shown in Figure 2. 

Here we see a new form of sharing constraint, namely sharing between struc- 
tures. In SML 90 this specifies tha t  when the functor is applied to actual struc- 
tures Ty and Unify, it must be the case that  Ty is the same substructure as the 
Type-substructure of Unify. This of course implies that  types that  are specified 
in both Ty and Unify. Type are shared as well, e.g., we have the type equality 
Ty. Type = Unify. Type. Type. In SML 96, structure sharing has a weaker seman- 
tics: there is no notion of identity of structure; structure sharing constraints are 
still allowed, but they just  abbreviate a sequence of type sharing constraints. 
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signature TYPE = 

si6 
eqtype tyvar 
val  freshTyvar: unit -> tyvar 
(*... components omitted ... *) 
va l  mkTypeTyvar: tyvar-> Type 

and un Type Tyvar: Type-> tyvar 

val  mkTypeList: Type-> Type 
and unTypeList: Type -> Type 

type subst 
val  Id: subst 
(*the identify substitution; *) 

val  mkSubst: tyvar* Type-> subst 
(*make singleton substitution; *) 

val  on : subst * Type-> Type 
(*application *) 

val  pr Type : Type-> string 
(*printing *) 

end 

s igna tu re  UNIFY= 
s ig  

s t r u c t u r e  Type: TYPE 
exception Notlmplemented of string 
except ion Unify 
val  unify: Type.Type* Type.Type-> 

Type.subst 
end; 

Fig. 1. Signatures TYPE and UNIFY 

We also have to extend the Type functor to meet the enriched T Y P E  signa- 
ture, see Figure 3. 

Exercise 8. Extend the typechecker of Version 2 to handle equality. 
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f u n c t o r  TypeChecker 
( (*.. .  *) 

s t r u c t u r e  Ty: T Y P E  
s t r u c t u r e  Unify: U N I F Y  
sharing Unify. Type = Ty 

)= 

s t r u c t  
inf ix on 
val (op on) = Ty.on 
(*. . .  *) 

fun  tc (exp: Ex.Expression) : Ty. Type= 
( c a s e  exp of  

(*.. .  *) 

[ Ex.LISTexpr []  => 
l e t  v a l  new = Ty.fresh Tyvar() 
i n  Ty.mkTypeList(  

Ty. mk Type Tyvar new) 
end  

] Ex .CONSexpr (e l , e2 )  => 
l e t  

v a l  t l  = tc el  
val t2= tc e2 
v a l  new = Ty.freshTyvar () 
v a l  newt=- Ty.mkTypeTyvar new 
va l  t2 '= Ty.mkTypeList  newt 
v a l  $1 = 

Unify.unify(t2,  t2') 
h a n d l e  Unify. Unify => 
r a i s e  TypeError(e2, 

"expected list type") 

v a l  $2  = 
Unify.unify(S1 on newt, 

$1 on t l )  
h a n d l e  Unify. Unify => 
r a i s e  TypeError( exp, 

"element and list have different types") 
in $2 on ($1 on t2) 
end  

) h a n d l e  Unify.NotImplemented msg --> 
r a i s e  NotImplemented msg 

end ;  (* TypeChecker*) 

F i g .  2.  T h e  TypeCheckerfunctor 
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f u n c t o r  Type() : T Y P E  = 
s t r u c t  

t y p e  tyvar = int 
v a l  ]resh Tyvar = 

l e t  v a l  r= re] 0 
i n  f n ( ) = > ( r : = / r  + 1 ;  /r)  
end  

d a t a t y e e  Type = I N T  
] BOOL 
I L I S T  of  Type 
I T Y V A R  of  tyvar 

f u n  mkTypeTyvar tv = T Y V A R  tv 
and u n T y p e T y v a r ( T Y V A R  tv) = tv 

] unTypeTyvar_ = r a i s e  Type 
f u n  mk TypeList( t)= L I S T  t 
and unTypeL i s t (L IST  t)= t 

i unTypeList(_)= r a i s e  Type 

t y p e  subst= Type-> Type 

f u n  Id x-- x 

f u n  mkSubst(  tv , ty)= 
l e t  

f u n  s u ( T Y V A R  tv')= 
i f  tv=tv' t h e n  ty 
e l s e  T Y V A R  tv '  

I su ( INT)  = I N T  
] su (BOOL)=  BOOL 
I s u ( L I S T  ty') = 

L I S T  (su ty') 
i n  su 
end 

fun o n ( S , t ) =  S( t )  

f u n  prType = (*... *) 
end ;  

F i g .  3. T h e  Type f u n c t o r  
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11 Vers ion  3: A different i m p l e m e n t a t i o n  of t y p e s  

Version 3 arises from Version 2 by replacing the Type functor by a different 
implementation of types. Instead of representing substitutions as functions, Ver- 
sion 3 implements type variables by references (pointers) so that it can perform 
substitutions very efficiently, by assignments. Here is an outline of the code: 7 

f u n c t o r  ImpType( )  : T Y P E  = 
struct 

d a t a t y p e  'a option = 
N O N E  

I S O M E  of  'a 
d a t a t y p e  Type = 

I N T  I B O O L  
I L I S T  of  Type 
I T Y V A R  of  tyvar 
w i t h t y p e  tyvar = 

Type option ref 
fun  fresh Tyvar( ) = ref ( N O N E )  
e x c e p t i o n  Type 
fun  rnkTypeInt()  = I N T  
and un TypeInt(  I N T ) = (  ) 

I (*... *) 
I unTypeInt(  T Y V A R ( r e f ( S O M E  t) ) )= 

un TypeInt t 
I unTypeInt  _ = r a i s e  Type 

(*...*) 
t y p e  subst = unit  
va l  Id= ( ) ;  
e x c e p t i o n  MkSubst;  
fun  mkSubst(  tv, ty) = 

c a s e  tv o f  

t e l ( N O N E )  => tv:= ( S O M E  ty) 
I r e f ( S O M E  t) => r a i s e  MkSubst  

fun  on(S ,  t)= t 
fun  prType = (*.. .  *) 

end ; 

Exercise 9. You will find the prType operation in ImpType in Version 3 rather 
unsatisfactory; make modifications to correct this. (Hint: do not change anything 
but the functor.) 

7 The withtype construct declares a type abbreviation within a datatype declaration. 
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1 2  V e r s i o n  4:  I n t r o d u c i n g  v a r i a b l e s  a n d  l e t  

We now extend Version 3 by implementing the type checking of l e t  expressions 
and of identifiers. 

The typechecker function t c  now has to take two arguments,  

tc( TE, e) 

where e is an expression and TE is a type environment, which maps  variables 
occurring free in e to type schemes. The definition of what a type scheme is will 
be given below; for now it suffices to know that  every type can be regarded as a 
type scheme. 

To take an example,  if TE maps x to i n t  and y to i n t ,  then tc will deduce 
the Mini ML type i n t  for the expression x+y. However, if TE mapped  y to bool ,  
there would be a type error. 

The fact tha t  we can bind variables to expressions whose types have been 
inferred to contain type variables means that  we get type variables in the type 
environment.  For instance, to type check 

let x = [] in 4 :: x end 

we first check [] yielding the type ' a l  l i s t ,  say. Then we bind x to the type 
scheme V ' a l . ' a l  l i s t .  Here the binding V ' a l  of ' a l  indicates tha t  when we 
look up the the type of x in the type environment,  we return a type obtained 
from the type scheme V ' a l . '  a l  l i s t  by instantiat ing the bound variables (here 
just  ' a l )  by fresh type variables. In our example,  when we look up x in the type 
environment during the checking of 4 : : x, we instantiate ' a l  to a fresh type 
variable ' a2 ,  say, yielding the type ' a 2  l i s t  for x. Thus we get to unify i n t  
l i s t  against ' a 2  l i s t ,  yielding the substi tution of i n t  for ' a2 .  

Throughout  the body of the l e t ,  x will be bound to V ' a l . ' a l  l i s t  in the 
type environment.  Since we take a fresh instance of this type scheme each t ime 
we look up x, we can use x both  as an i n t  l i s t  and as an i n t  l i s t  l i s t ,  say: 

l e t  x = [] in  ( 4 : : x ) : : x  end 

ExerciselO. Assuming tha t  you instantiate the bound ' a l  to ' a 3  when you 
meet  the last occurrence of x, what  two types should be unified, and what  is the 
resulting substitution on ' a3 ? 

In ML, a type scheme always takes the form Va  1 -..c~n.v, (n ~ 0), where 
a l , . . . ,  an are type variables and r is a type not containing quantifiers. In the 
f ragment  of Mini ML considered so far, all type schemes inferred by the algori thm 
will be closed (i.e., any type variable occurring in r is amongst  the a l , . . . ,  am), 
but  when one introduces functions and application, this no longer is the case. 

Exercise 11. Extend the type checker (Version 4) to handle conditionals and 
equality. 
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Exercise 12 For the extra keen. Extend Version 4 to cope with lambda abstrac- 
tion (fn) and application. First, you have to introduce arrow types with con- 
structors and destructors. Then you have to change the type of c l o s e  so that  it 
takes two arguments, namely a type environment and a type. It should return 
the type scheme that  is obtained by quantifying all the type variables that  occur 
in the type but  do not occur free in the type environment. 

Then you can modify the type checker. When you type check a lambda 
abstraction, you just bind the formal parameter  to the trivial type scheme which 
is just a fresh type variable (no quantified variables). Thus the type environment 
can now contain type schemes with free type variables. 

An application t c ( T E , e )  now yields two arguments, namely a type t and 
a substitution S; the idea is that  if you apply the substitution S to the type 
environment TE, which now can contain free type variables, the expression e 
has the type t. When an expression consists of more than one subexpression, 
the type environment gradually becomes more and more specific by applying 
the substitutions produced by the checking of the subexpressions one by one. 
Moreover, the substitution returned from the whole expression is the composition 
of these individual substitutions. (You have to extend the T Y P E  signature (and 
the Type functor) with composition of substitutions. 

Finally, you can extend the unification algorithm to cope with arrow types. 
(This will also use composition of substitutions.) 

Exercise 13. Finally, extend type type checker (Version 4) to handle recursive 
functions. In l e t  r e c f  = el in  e2 end, el must be a lambda abstraction and 
the typing rule is 

TE + {f  ~+ v} ~-el : r  
TE + { f  r e2: 

TE F l e t  r e c f  = el in  e2 en d :~  "I 
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14 Further Reading 

The Definition of Standard ML[MTH90] defines Standard ML formally. It is ac- 
companied by a Commentary[MT91]. Milner's report on the Core 
Language[MilS4], MacQueen's modules proposal[Mac84] and Harper 's I /O pro- 
posal were unified in[RHM86]. 

Several books on Computer  Programming, using Standard ML as a pro- 
gramming language, are available[kW87,Rea89,Pau91,Sta92,CMP93]. In addi- 
tion, there are medium-length introductions[Har86,Tof89]. 
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Compilation techniques are treated by Appel[App92]. In this note we have 
used bits of The Edinburgh Standard ML Library[Bet91]. 

There is a large body of research papers related to ML, none of which we 
will cite on this occasion. 
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