Mads Tofte, March 1, 1989

Laboratory for Foundations of Computer Science
Department of Computer Science

Edinburgh University

Four Lectures on Standard ML

The following notes give an overview of Standard ML with emphasis placed
on the Modules part of the language.

The notes are, to the best of my knowledge, faithful to “The Definition of
Standard ML, Version 2”[1], as regards syntax, semantics and terminology.
They have been written so as to be independent of any particular implemen-
tation. The exercises in the first 3 lectures can be tackled without the use
of a machine, although having access to an implementation will no doubt be
beneficial. The project in Lecture 4 presupposes access to an implementation
of the full language, including modules. (At present, the Edinburgh compiler
does not fall into this category; the author used the New Jersey Standard ML
compiler.)

Lecture 1 gives an introduction to ML aimed at the reader who is familiar with some
programming language but does not know ML. Both the Core Language and the Modules
are covered by way of example.

Lecture 2 discusses the use of ML modules in the development of large programs. A
useful methodology for programming with functors, signatures and structures is presented.

Lecture 3 gives a fairly detailed account of the static semantics of ML, modules, for
those who really want to understand the crucial notions of sharing and signature matching.

Lecture 4 presents a one day project intended to give the student an opportunity of
modifying a non-trivial piece of software using functors, signatures and structures.

[1] R. Harper, R. Milner and M. Tofte: “The Definition of Standard ML, Version 27,
(ECS-LFCS-88-62) Labroatory for Foundations of Computer Science, Dept. of Computer
Science, University of Edinburgh.

1 ML at a Glance

Suppose we were to draw a map of the land-

scape of programming languages. Where
would ML fit in? COBOL and ML could
safely be put down far apart. The in-

put/output facilities in COBOL operate on
specific kinds of input /output devices, for in-
stance allowing the programmer to declare
index sequential files. ML just has the no-
tion of STREAMS, a stream being a sequence
of characters, much like streams in UNIX or
text files in PASCAL. On the other hand,
ML is extremely concise compared to the
verbose COBOL and ML is much better
suited for structuring data and algorithms
than COBOL is.

ML is closer related to PASCALL. Like PAS-
CAL, ML has data types and there is a type
checker which checks the validity of programs
before they are run. Both PASCAL and
ML follow the tradition of ALGOL in that
variables can have local scope which is de-
termined statically from the source program.
However, PASCAL and ML are radically dif-
ferent in how algorithms are expressed. In
PASCAL, as in many other languages, a vari-
able can be updated (using :=). Algorithms
are often expressed as iterated sequences of
statements (using while loops, for instance),
where the effect of executing one statement
is to change the underlying store. In ML,
statements are replaced by EXPRESSIONS; the
effect of evaluating an expression is to pro-
duce a value. Moreover, variables cannot
be updated; REFERENCES are special values
that can be updated, and as all other values
they can be bound to identifiers, but only
rarely are the values one binds to variables
references. Iteration is expressed using recur-
sive functions instead of loops. In ML, func-
tions are values which can be passed as ar-
guments to functions and returned as results

from functions, and ML programmers do this
all the time. ML is an example of a FUNC-
TIONAL language; PASCAL is an example of
a PROCEDURAL language.

LISP is also sometimes referred to as a
functional language. In LISP, programs can
be treated as data, so that LISP programs
directly can decompose and transform LISP
programs. This is harder in ML. On the other
hand, the type discipline of ML is extremely
helpful in detecting many of the mistakes that
pass unnoticed in a LISP program.

Like ADA, ML has language constructs for
writing large programs. Roughly speaking, a
STRUCTURE in ML corresponds to a PACK-
AGE in ADA; a SIGNATURE corresponds to
a PACKAGE INTERFACE and a FUNCTOR in
ML corresponds to a GENERIC PACKAGE in
ADA. However, ML, admits structures (not
just types) as parameters to functors.

1.1 An ML session

An ML session is an interactive dialogue be-
tween the ML system and the user. You type
a PROGRAM in the form of one or more DEC-
LARATIONS (terminated by semicolon) and
the system responds either by accepting the
declarations or, in case the program is ill-
formed, by printing an error message.

To give a concrete idea about what ML
programs look like, we shall work through
Consider the prob-
A HEAP
is a binary tree of ITEMS, for example:

N
11 1 7/9\1 5

the following example.
lem of implementing heaps.

For a binary tree to be a heap, it must sat-
isfy that for every item ¢ in the tree, 7 is less
than or equal to all items occurring below .
In the above picture items are integers and
the relation “less than or equal” is the nor-
mal < on integers. The advantage of a heap
is that it always gives fast access to a minimal
item and that it is easy to insert and delete
items from a heap. This has made the heap
a popular data structure in a number of very
different applications. It was originally con-
ceived under the name “priority queue” as a
means of scheduling processes in an operating
system; in that case the items are processes
and the partial ordering is that process p is
less than or equal to process ¢, if p should
be executed no later than ¢. Heaps are also
used in the HEAP SORT algorithm, which is
based on the observation that one can sort a
list of items by first inserting the items one
by one in a heap and then removing them one
by one.

1.2 Types and Values

In the following figures we present the ML
declarations the author provided in this par-
ticular session. The responses from the ML
compiler are not shown. For clarity, the ac-
tual input has been edited using typewriter
font for the reserved words and italics for
identifiers, regardless of whether these iden-
tifiers are pervasives (e.g. int) or declared by
the user (e.g. item).

type item = int;

fun leg(p: item, q: item): bool =
P <=4

infix leq;

fun max(p, ¢) = if p leq ¢ then ¢ else p
and min(p, ¢q) = if p leq ¢ then p else ¢
datatype tree = L of ilem

| N of item * tree * iree;
val t= N(7, L 11, N(9, L 17, L 15));

fun top(L i) =1
| top(NCi, _, 2)) =14

We start out by considering integer heaps
only; therefore we first declare the type item
to be an abbreviation for int. Then we de-
clare a function leq to be the pervasive <=
on integers. We then declare that leq is to
be used as an infix operator, as illustrated in
the declaration of the two functions max and
min.

Every binary tree is either a leaf containing
an item or it is a node containing an item and
two trees (the subtrees). This is expressed by
the datatype declaration. datatype decla-
rations are automatically recursive, i.e. data
types can be declared in terms of themselves.
This is illustrated by the declaration of tree.
This data type has two CONSTRUCTORS, L
and N. Note that for example 7 is an item,
but L APPLIED TO 7, written L(7), or just
L 7, is of type tree. Then the heap from the
earlier picture is bound to the value variable
i

Exercise 1 Declare a heap ¢’ of the same

depth as ¢ containing the integers 78, 34, 5,

12, 15, 28, and 9.

To define a function on trees it will suffice
to define its value in the case the argument
tree is a node and in the case the tree is a
node. The declaration of the function top il-
lustrates this. (top applied to a tree returns
the item at the top of the tree). (L i) and
(N(i, _, _)) are examples of PATTERNS. Ap-
plying a function (here top) to an argument
(e.g. t) is done by matching the argument
against the patterns till a matching pattern
is found. For example top t evaluates to 7.

1.3 Recursive Functions

fun depth(L _) =1
| depth(N(i, I, r)) =
1 + max(depth I, depth r);

depth t;

fun isHeap(L _) :bool = true
| isHeap(NCi, 1,) =
i leq top [andalso
i leq top r andalso
isHeap [andalso
isHeap r

The function depth maps trees to integers;
for instance depth t evaluates to 3. As spelled
out in the declaration of depth, the depth of
a leaf is 1 and the depth of any other tree
is 1 plus the maximum of the depths of the
left and right subtrees. The function depth
is RECURSIVE, i.e. defined in terms of itself.
Another example of a recursive function is the
function isHeap which when applied to a tree
returns the value true if the tree is a heap and
false otherwise.

Exercise 2 Write a function size which
when applied to a tree returns the total num-
ber of items in the tree.

Exercise 3 The function top returns a
minimal item of a heap. Write a recursive
function maxltem which returns a maximal
item.

1.4 Raising Exceptions

One often wants to define a function that can-
not return a result for some of its argument
values. Suppose, for example, that we wish
to define a function initHeap which for given
integer n returns a heap of depth n. This
only makes sense for n > 1. This can be
expressed in ML by raising an EXCEPTION
in the case n < 1. The effect of evaluating
the expression raise e, where ¢ is an excep-
tion, is to discontinue the current evaluation.
Often, the exception will be HANDLED by a
handle expression (not illustrated by our ex-
amples); if no handler catches the exception,
it propagates to the top-level where it will be
reported as an uncaught exception.

val initial = 0
exception InitHeap
fun mitHeap n =
if n<1 then raise InitHeap
else if n =1 then L(initial)
else let val t = initHeap(n - 1)
in N(Qnitial, t, t)
end

Notice the let dec in exp end expression. To
evaluate it, one first evaluates initHeap(n -
1) and binds the resulting value to . Then
one evaluates the body, N(initial, t, t) us-
Notice that the scope
of the declaration of t is the expression

ing this value for t.

NC(initial, t, t); in particular the two occur-
rences of tin that expression do not refer to

N(7, L 11, N9, L 17, L 15)).

Exercise 4 Define functions [leftSub and
rightSub which when applied to a tree returns
the left and the right subtree, respectively.

Finally, we shall write a function replace
which when applied to a pair (i, h), where
i is an item and h is a heap, returns a pair
(', A'), where 7' is the item at the top of
the heap h and &' is a heap obtained from h
by inserting ¢ in place of the top of h. We
must make sure that the resulting tree really
is a heap. Therefore, in the case that iis to
be inserted in a node above a subtree with a
smaller item, ¢ swops place with the smaller
item.

fun replace(i, h) = (top h, insert(i, h))
and insert(i, L _) = L{i)
| insert(i, N(_, [, r))=

if i leq min(top I, top r)

then N(i, [,)
if (top 1) leq (top r) then
N(top 1, insert(i, 1), r)
(x top r< min(i, top [) *)
N(top r, 1, insert(i, 1)) ;

else

else

val Coutl, t1) = replace(10, 1) ;

t;

val (out2, t2) = replace(20, t1)

The special parenthesis (* and *) delimit
comments.

Exercise 5 In the case where one recur-
sively inserts i in the left subtree, how can
one be sure that it is valid to put top [above

r in the tree?

If one types an expression followed by a
semicolon (such as ¢; in the above program)
the ML system evaluates the expression and
prints the result. In the above example, it will
turn out that even after we have “replaced” 7
by 10, tis bound to the original heap. Indeed,
this “replacement” in no way affects the value
bound to ¢; it simply results in a new value,
which subsequently is bound to ¢1.

Exercise 6 After the last
what values are bound to out2 and t27

declaration,

1.5 Structures

The above declarations of heaps and oper-
ations on heaps belong together. In ML
there is a program unit called a STRUCTURE
which encapsulates a sequence of declara-
tions. The following declaration declares a
structure Heap containing all the declarations
(copied from above) encapsulated by struct

and end.

structure Heap =
struct
type item = int;
fun leg(p: item: q: item): bool = p <= ¢;
fun max(p, ¢) = ...
and min(p, ¢) = ...
datatype tree = L of item
| N of item * tree * tree;
valt=...
fun top(L) = ...
fun depth(L _) = ...
fun isHeap(L _) :bool = . ..
val initial = 0
exception InitHeap
fun mitHeap n = ...
fun replace(i, h) = ...
and insert(e, L _) = ...
end; (x Heap *)

val smallHeap = Heap . initHeap(1) ;
Heap . replace(20, smallHeap) ;

Identifiers declared in a structure are accessed
from outside the structure by a LONG IDENTI-
FIER, for instance Heap. initHeap (which can
be read “the initHeap in Heap” or just “Heap
dot initHeap”). In a large program contain-
ing many structures, long identifiers make it
much easier for the reader to find the defini-
tion of an identifier.

1.6 Signatures

The “type” of a structure is called a SIGNA-
TURE. A signature can specify types, without
necessarily saying what the types are. More-
over, one can specify values (in particular
functions) by specifying a type for each vari-
able, without saying how such a specification
can be met by an actual declaration.

signature HFHAP =
sig
type item
val leq: item * item => bool
val mazx: item * item > item
val min: item * item -> ilem
datatype tree = L of item
| N of item * tree * tree
val t: item
val top: tree => item
val depth: tree => int
val isHeap: tree => bool
val initial: item
exception InitHeap
val iitHeap: int -> tree
val replace: item * tree => item * tree
val insert: item * tree => tree

end; (x HEAP %)

As one can check, the structure Heap
MATCHES signature HEAP in the following
sense: for every type specified in HEAP, there
is a corresponding type in Heap; for every
exception specified in HEAP, there is a cor-
responding exception in Heap; and for ev-
ery value specified in HEAP there is a cor-
responding value in Heap which has the spec-
ified type.

1.7 Coersive Signature Match-
ing

However, the signature HEAP reflects details
of the implementation in Heap which heap
users should not have to worry about. (Obvi-
ously, the value t is completely unnecessary,
and there is no reason why users should have
access to the constructors L and N given that
we have already given the user initHeap and
replace.) By pruning the signature we obtain

the following shorter declaration of HEAP.

signature HEAP =
sig
type item
val leq: item * item => bool

type tree

val top: tree -> item

exception InitHeap

val iitHeap: int => tree

val replace: item * tree => item * tree

end; (x HEAP %)

This is a much cleaner interface, so whenever
we refer to HEAP in the following, we mean
this version.

In practice, one should write down a sig-
nature before one attempts to write down a
structure which matches it. In this way one
can decide what types and operations are
needed without having to think about algo-
rithms at the same time. So let us assume
that we started out by declaring the HEAP
signature. We then imprint the view provided
by HEAP on the declaration of the structure
Heap by a SIGNATURE CONSTRAINT:

structure Heap: HEAP =
struct
type item = int;

end; (x Heap *)

7 Heap.t
Heap . replace(7, Heap. initHeap 3) ;

After this declaration of Heap, we cannot
write Heap.t, since t is not mentioned in

HEAP. However, we can write Heap . replace
as replace is specified. Moreover, although
HEAP does not specify that item should be
int, the ML system discovers that item is
in fact int in Heap and that is why 7 will
be accepted as an item in the application
Heap . replace(7, Heap. initHeap 3). Thus a
signature constraint may hide components of
a structure, but it does not hide the true iden-
tity of the types declared in the structure, ex-
cept that one can hide the constructors of a
datatype by specifying it as a type.

1.8 Functor Declaration

Almost all of what we did for heaps contain-
ing integer items would work for a heap whose
items are of a different type. More precisely,
given any type item, any binary function leq
on items and any initial item, the signature
HEAP is satisfied by the declarations we have
already written. Let us specify the general
requirements of a Heap structure.

signature [TEM =

sig

type item

val leq: item * item => bool
val initial: item

end;

What we are after is a structure which is
parameterised on any structure, [ltem, say,
which matches ITEM. In ML, a parame-
terised structure is called a FUNCTOR. The
following table contains the complete functor
declaration; the new bits are in bold face.

functor Heap(Item: ITEM): HEAP =
struct
type item = Item.item
fun leg(p: item, q: item): bool =
Item.leq(p,q)
fun intmax(i: int, j) =
if 1 <= j then i else j
infix leq;
fun max(p, ¢) = if p leq ¢ then ¢ else p
and min(p, q) = if p leq ¢ then p else ¢
datatype tree = L of ilem
| N of item * tree * iree;
fun top(L i) =1
| top(NCi, _, 2)) =14
fun depth(L _) =1
| depth(N(i, I, r)) =
1 + intmax (depth [, depth r);
fun isHeap(L _) : bool = true
| isHeap(NCi, 1,) =
i leq top | andalso
i leq top r andalso
isHeap | andalso
isHeap r
exception InitHeap
fun mitHeap n =
if n<1 then raise InitHeap
else if n = 1 then L(Item.initial)
else let val t = initHeap(n - 1)
in N(Item.initial, ¢, ¢)
end
fun replace(i, h) = (top h, insert(i, h))
and insert(e, L _) = L)
| insert(i, N(_, [, r))=
if i leq min(top 1, top r)
then N(i, [, 7r)
else if (top) leq (top r) then
N(top I, insert(i, 1), r)
else (x top r < min(i, top [) *)
N(top r, [, insert(i, 1)) ;
end; (x Heap *)

In the first line, [ltem is the PARAMETER
structure of the functor and HEAP is the RE-
SULT SIGNATURE of the functor. The BODY
of the functor is everything after the = in the
first line.

Notice that we included declarations of
item and leq in the body of the functor; since
the result signature specifies them, they must
be provided. If you read the body carefully,
you will see that it makes sense for any struc-

ture which matches ITEM.

Exercise 7 Declare a functor Pair which
takes as a parameter a structure matching the
simple signature

sig type coord end
and has the following result signature:
sig
type point
val mkPoint: coord * coord => point
val z_coord: point => coord

val y_coord: point => coord
end

You do not have to name these signatures (by
the use of signature declarations); they can be
written down directly where you need them,
if you prefer.

Exercise 8 When the author first tried to
write the Heap functor, he simply copied the
original depth function which used maz, not
intmax. However, the type checker did not
let him get away with that. Why?

1.9 Functor Application

We can now get various heaps (indeed heaps
of heaps) by applying the Heap functor to dif-
ferent argument structures. Of course, we can
only apply it to structures that match I'TEM,;
this will be checked by the compiler.

Here is how one can get a string heap:

structure Stringltem =

struct

type item = string

fun leq(i:item, j) =
ord(i) <= ord(j)

val initial =" "

end;

structure StringHeap = Heap(Stringltem)

val (outl, t1) =
StringHeap . replace("abe",
StringHeap . initHeap(1)) ;

val (out2, t2) =
StringHeap . replace("man", t1) ;

The pervasive ord function applied to a string
s returns the ASCII ordinal value of the first
character in s, and raises exception Ord when
s 1s empty.

Exercise 9 Declare a structure Intltem us-
ing the declarations we originally used for in-
teger heaps. Then obtain a structure IntHeap
by functor application.

Exercise 10 How does one get an integer
heap whose top is always maximal?

Exercise 11 Declare a structure
IntHeapHeap whose items themselves are in-
teger heaps. (You can use the top function to

define a leq function on integer heaps.)

1.10 Summary

ML consists of a CORE LANGUAGE and a
MODULES LANGUAGE. The core language has
values (functions are values), data types, type
abbreviations and exceptions. The modules
language has structures, signatures and func-
tors. There is no actual language construct

called a module, but ML, programmers often
refer to a module meaning “a structure or a
functor”.

2 Programming with ML
Modules

2.1 Introduction

This lecture gives a more thorough intro-
duction to the modules part of ML and de-
scribes a methodology for programming with
its main constructs: structures, signatures
and functors.

The core language is interactive: you type
a declaration, get a reply, type another decla-
ration and so on, thus gradually adding more
and more bindings to the top-level environ-
If we could think strictly bottom-

up, declaring one value or type in terms

ment.

of the preceding values and types, without
ever making unfortunate implementation de-
cisions or losing the perspective of the entire
project, then this gradual expansion of the
top-level environment would be quite suffi-
cient. Unfortunately, we cannot, indeed a
program which is written as one long list of
core language declarations can easily end up
looking rather like a long shopping list where
items have been added in the order they came
to mind.

Regardless of whether a programming lan-
guage is interactive or not, one needs the abil-
ity to divide large programs into relatively in-
dependent units which can be written, read,
compiled and changed in relative isolation
from each other.

One approach, taken by some, is to pro-
vide more or less language independent soft-
ware packages that help programmers organ-
ise collections of programs typically by allow-
ing (or forcing) them to document their pro-
grams in specific ways. The crucial problem
with this approach is of course to ensure con-
sistency between the documentation and the
programs, in particular to ensure that the in-
formation held by the tool really is sufficient

to ensure that the constituent units can be
put together in a consistent manner.
Another approach, taken in several pro-
gramming languages (e.g. Ada and ML), is
to provide module facilities in the program-
ming language itself. Many of the operations
one needs when programming with modules
are similar to operations one needs when pro-
gramming in the small, so many ideas from
usual programming languages apply to pro-
gramming in the large as well. For instance,
just as it is a type error (in the small) to add
true and 7, say, so it is a type error (in the
large) to write a module M2, say, assuming
the existence of a module M1 which provides
a function f, and then combine M2 with an
actual module M1 which either does not pro-
vide any f or provides an f of the wrong type.
The idea is that such mistakes should be de-
tected by a type checker at the modules level.
This leads to the exciting idea of having
just one language with constructs that work
uniformly for “small” as well as for “large”
programs. One such language is Pebble by
In Pebble records

can contain types, so a module consisting of

Burstall and Lampson.

a collection of types and values is now itself
a value, which for example can be passed as
an argument to a function. There are some
trade-offs, however. The ML type checker is
based on a strict separation of run-time and
compile-time. In designing the modules lan-
guage it has been necessary to restrict the
operations on types in comparison with the
operations on values in order to maintain the
static type checking. This has led to a strati-
fied language, in which the modules language
contains phrases from the core language, but
not the other way around.

I shall use the term “module” rather
vaguely to mean “a relatively independent
program unit”. In particular languages
they have been called “packages”, “clusters”,

“modules” and in ML, we use the word “struc-
ture”.

Likewise, there is no standard terminology
for “the type of a module”, which has aquired
names such as “package description”, “inter-
face” and the ML term “signature”.

As we shall see, the real power of a mod-
ules system comes from the ability to param-
eterise modules. Ada has “generic packages”.
ML has “functors”.

In ML, a structure is a collection of data
types, types, values, exceptions and even
other structures. A signature specifies types
and data types and gives the types of val-
ues and exceptions. A functor is essentially a
function from structures to structures. Func-
tors cannot take functors as arguments, nor
The

purpose of this lecture is to convince you that

can they produce functors as results.

even this apparently simple notion of functor
constitutes a powerful extension of the core
language. As will be demonstrated, one can
write an entire system using just signatures
and functors and then build the system using
functor applications.

Imagine we want to write a parser for a
programming language. In order to build the
parser top-down, we might start by sketch-
ing the parser itself. However, as program-
ming normally is a complex process involv-
ing both the odd low-level implementation
idea and more high-level considerations about
overall structure, let us start at an interme-
diate level, the problem of writing a symbol
table.
which allows one to store and retrieve infor-

(A symbol table is simply a facility

mation about symbols.)

2.2 Signatures

The way one in ML sketches a structure is to
write down a signature. Here is a first sketch
of a symbol table signature, called OTable as

10

it is opaque in the sense that it does not reveal
many implementation details.

signature OTable =
sig
type table
exception Lookup
val lookup: table * Sym.sym -> Val. value
val update: table * Sym.sym * Val. value
=> table
end

At this early stage, we cannot know exactly
what symbols are going to be; nor can we
know what kind of values we are going to
store with the symbols. Therefore we imag-
ine structures Sym and Val which declare the
types sym and value, respectively. Sym. sym
is an example of a LONG IDENTIFIER, in this
case a long type constructor. The two struc-
ture identifiers Sym and Val are FREE in
OTable.

There are many different ways of imple-
menting a symbol table which matches this
signature. One possibility is to use an asso-
ciation list, i.e. a list of pairs of symbols and
values. Since the symbol table is going to be
used extensively, we will probably want some-
thing more efficient. We cannot use an array,
for arrays map integers (rather than symbols)
to values. (Actually, the ML language defi-
nition does not include arrays, but they are
provided in most implementations). But we
can implement the symbol table as a hash
table: we can require that the Sym struc-
ture provides a hash function from symbols
to integers and then assume the existence of
another structure, IntMap, which implements
maps on the integers. Since the hash function
may map different symbols to the same inte-
ger, we take an IntMap which maps integers

to lists of pairs of symbols and values:

signature T'Table =

sig

datatype table = TBL of

(Sym . sym * Val. value) list IntMap . map

exception Lookup

val lookup: table * Sym.sym => Val. value

val update: table * Sym.sym * Val. value
=> table

end

2.3 Structures

Here is a structure which implements a sym-

bol table.

structure SymTHl =
struct

datatype table = TBL of

(Sym . sym * Val. value) list IntMap . map
exception Lookup

fun find(sym,[1) = raise Lookup
| find(sym, (sym’,v)::rest) =
if sym = sym’ then v

else find(sym,rest)

fun lookup(TBL map, s) =
let val n = Sym. hash(s)
val [= IntMap . applyCmap,n)
in find(s,l)
end handle IntMap. NotFound =>
raise Lookup

end

11

When binding a structure to a structure
identifier one can impose a SIGNATURE CON-
STRAINT on the structure.

structure SymTbl : OTable =
struct

end

As a result, all identifiers of the structure that
are not mentioned in the signature are hid-
den. In the above example we hide the con-
structor T'BL and the function find. Besides
update, the ...
values, exceptions and types, but as a result

in SymTbl may declare extra

of the signature constraint, none of these ex-
tra components will be visible from outside
the structure.

It is often the case that there is not a sin-
gle signature which “best” constrains a given
structure because different parts of the pro-
gram should see different degrees of details of
the structure. (The parser should be written
using a opaque signature for the symbol ta-
ble; by contrast, a structure which prints out
the symbol table (for testing, for example)
will need to know more details).

During the design of ML it was decided
that it 1s vital to admit different views of the
same structure. One way of achieving this is
to bind the structure to more that one struc-
ture identifier, each time using a different sig-
nature constraint.

structure SymTbl : TTable =
struct

datatype table = TBL of

(Sym . sym * Val. value) list IntMap . map
exception Lookup

fun find(sym,[1) = raise Lookup
| find(sym, (sym’,v)::rest) =

if sym = sym’ then v

else find(sym,rest)

fun lookup(TBL map, s) =
let val n = Sym. hash(s)
val [= IntMap . applyCmap,n)
in find(s,l)
end handle IntMap. NotFound =>
raise Lookup

end

structure SmallTbl: OTable = SymTbl

evaluation of

The the

struct...end yields an environment just as

dynamic

if we had typed the constituent declarations
at top-level. Dynamically, there is just one
lookup function, for example, and as a re-
sult of the above declarations, this function
is shared between SymTbl and SmallTbl.
Statically, however, the elaboration of the
above declarations yields two different views
of this environment. Since there is just
one lookup function, we should of course
be free to refer to it as SymTbl. lookup or
SmallTbl. lookup, whichever we prefer. This
requires that these two long identifiers have
the same type; so the static semantics must
be such that the types SymTbl. table and
SmallTbl. table are considered shared.

2.4 Functors

Unfortunately, neither the declaration of the
signature OTable nor the declaration of the
structure SymTbl makes sense on its own.
The reason is that they both contain free

identifiers. OTable relies on structures Val

and Sym and SymTbl in addition relies on
IntMap. As a consequence, we can compile
neither OTable nor SymTbl in the initial top-
level environment.

What we need to achieve this is clearly the
ability to abstract both OTable and SymTbl
on their free identifiers. Such an abstraction
is called a FUNCTOR in ML:

functor SymTblFct(
structure IntMap: IntMapSig
structure Val: ValSig
structure Sym: SymSig) :

sig

type table

exception Lookup

val lookup: table * Sym.sym=-> Val. value

val update: table * Sym.sym * Val. value
-> table

end =

struct

datatype table = TBL of

(Sym . sym * Val. value) list IntMap . map
exception Lookup

fun find(sym,[1) = raise Lookup
| find(sym, (sym’,v):rest) =

if sym = sym’ then v

else find(sym,rest)

fun lookup(TBL map, s) =
let val n = Sym. hash(s)
val [= IntMap . apply(Cmap,n)
in find(s,[)
end handle IntMap. NotFound =>
raise Lookup

end

12

Now the Sym, Val and IntMap that occur in
the result signature and in the functor body
are bound as formal parameters of the func-
tor. Of course for this functor declaration to
make sense, we must first declare the three
signatures IntMapSig, ValSig and SymSig,
but that can be done without worrying about
how we get the corresponding structures. In-
deed, declaring these signatures is healthy ex-
ercise, as it makes us summarise what a sym-
bol table needs to know about symbols, val-
ues and intmaps.

Exercise 12 Declare the signatures
IntMapSig, ValSig and SymSig. Also com-
plete the functor body by declaring update,
extending your signatures, if needed.

When, in due course, we have defined
FastintMap, Data and
Identifier, say, corresponding to the formal

actual structures

structures IntMap, Val and Sym, respec-
tively, we can obtain a particular symbol ta-
ble by applying the symbol table functor.

structure MyTbl =

SymTblFct(structure IntMap = FastIntMap
structure Val = Data
structure Sym = Identifier)

Dynamically, the functor body is not eval-
uated when the functor is declared, but once
for each time the functor is applied. (In this
respect, functors behave a functions in the
core language.)

As part of the functor application, the com-
piler will check to see whether the actual ar-
gument structures match the specified signa-
tures. If that is not the case (for instance,
if Identifier does not contain a type sym or
FastintMap . apply takes three instead of two
arguments) then an error will be reported and

hence we are prevented from putting together
the inconsistent structures.

What is the signature of MyTbI? It is
not simply the result signature of Sym TblFet,
for that signature refers to the formal func-

Clearly, if

Identifier.sym is string and Data. value is

tor parameters Val and Sym.

real, then we should be able to write for in-
stance

sqrt(MyTbl. lookup(t, “pi”))

The signature of MyTbl, therefore, is ob-
tained by substituting the types of the actual
arguments for the types in the formal result
signature of SymTblFct.

sig

type table

exception Lookup

val lookup: table * Identifier.sym
-> Data. value

val update: table x Identifier. sym
* Data. value => table

end

2.5 Swubstructures

As we saw above, the signature of the result
of a functor application depends on the ac-
tual arguments to the functor. So apparently
there is no single signature which describes
all the symbol tables which can be created
by applying SymTblFct. But how, then, are
we going to declare a functor ParseFct, say,
which we can apply to any symbol table cre-

ated by SymTblFct?

13

The solution to this problem is to make ex-
plicit in the symbol table signature that any
symbol table depends on a Val and a Sym
structure.

signature SymTblSig =

sig

structure Val: ValSig

structure Sym: SymSig

type table

val lookup: table * Sym.sym=-> Val. value

val update: table * Sym.sym * Val. value
-> table

end

The specifications of Valand Sym no longer
refer to particular structures outside the sig-
nature, i.e. Val and Sym are now considered
bound in the signature. (Of course the sig-
nature identifiers SymSig and ValSig are still
free, but those you have already declared in
the exercise.)

The idea is that a structures can contain
not just values, exceptions and types as com-
ponents, but even other structures. These
are called the SUBSTRUCTURES of the struc-
ture. To make the result of SymTblFct match
SymThlSig, we have to declare structures Val
and Sym in the body. But that is easily done;
we simply bind them to the formal parame-
ters.

functor SymTblFct(

structure IntMap: IntMapSig
structure Val: ValSig

structure Sym: SymSig) : SymTblSig =
struct

structure Val = Val

structure Sym = Sym

datatype table = TBL of
(Sym . sym * Val. value) list IntMap . map
exception Lookup

fun find(sym,[1) = raise Lookup
| find(sym, (sym’,v):rest) =

if sym = sym’ then v

else find(sym,rest)

fun lookup(TBL map, s) =
let val n = Sym. hash(s)
val [= IntMap . apply(Cmap,n)
in find(s,[)
end handle IntMap. NotFound =>
raise Lookup

end

2.6 Sharing

A signature for lexical analysers might be as
follows (a lexical analyser reads individual
characters from an input file and assembles
them into symbols — in the case of a pro-
gramming language typically reserved words
and identifiers):

signature LexSig =

sig

structure Sym : SymSig
val getsym : unit => Sym. sym

end

We have included the specification of a sub-
structure Sym because a lexical analyser
needs to know about symbols. (Indeed, if we
want to declare LexSig before defining any
particular Sym structure, we are forced to in-
clude the substructure specification.

14

Here is a first

ParseFct.

attempt at defining

functor Parsel'ci(
structure SymTbl: SymTblSig
structure Lex: LexSig) =
struct

let val next = Lex. getsym()
in SymTbl. update(table, next, “declared”)
end

end

However, the let expression in the body
is not type correct! Since the type of
getsym() 1is Lex.Sym.sym, next has type
Lex. Sym.sym. However, by the specifica-
tion of update, its second argument must be
of type SymTbl. Sym.sym. The problem is
that although we have specified that SymTbl
depends on a Sym structure and Lex depends
on a Sym structure, nowhere have we spec-
ified that they depend on the same Sym
structure. The type checker will not make
an attempt to identify these two types, for
the idea is that the functor should be appli-
cable to any arguments that satify the formal
parameter specification (not just those that
satisfy the specification and in addition have
extra sharing). Therefore one is allowed to
specify needed sharing as well as needed com-
ponents by a so-called SHARING SPECIFICA-
TION. Grammatically, a sharing specification
can occur anywhere amongst structure, type,
value and exception specifications.

functor Parsel'ci(
structure SymTbl: SymTblSig
structure Lex: LexSig
sharing SymTbl. Sym = Lex. Sym) =

struct

let val next = Lex. getsym()
in SymTbl. update(table, next, “declared”)
end

end

One can specify sharing of structures and
of types (but not of values or exceptions). In
our example, we have to add yet a sharing
specification, this time a type sharing speci-
fication.

functor Parsel'ct(
structure SymTbl: SymThlSig
structure Lex: LexSig
sharing SymTbl. Sym = Lex. Sym
and type SymTbl. Val. value = string) =
struct

let val next = Lex. getsym()
in SymTbl. update(table, next, “declared”)
end

end

2.7 Building the System

Notice that we have now written the code of
the parser solely by declaring signatures and
functors. We have not had to write a single
top-level structure declaration. Having fin-
ished declaring the parser functor, we can re-
turn to the basics and declare functors that
implement Sym and Val. These functors can
be NULLARY,i.e. have an empty specification

of formal parameters.

Exercise 13 Write nullary funec-
tors ValFet, SymFct and IntMapFet whose
result match your signatures from the previ-
ous exercise.

15

We can now build the entire system by 2.8 Separate Compilation
functor applications and top-level structure
declarations. Some ML implementations have facilities
that allow you to compile declarations, for
instance functor declarations, in such a way
structure Val = ValFct() that the compiled code can persist between

sessions. However, even without such a facil-

structure Sym = SymFct() ity, using signatures and functors in the man-
ner described above gives the valuable ability
structure T 7able = to separately compile modules consisting of
Sym TblFct(structure IntMap=IntMapFect()signature and functor declarations, although
structure Val = Val the result of the compilation will not outlive

structure Sym = Sym the session.
Most ML systems have a wuse function
structure Lex = LexFct(Sym) which allows the ML source to be read from
a file rather than from the terminal. One can
structure Parser = then keep signatures in suitably named files
ParseFet(structure SymTbl = TTable and use these files at the beginning of each

structure Lex = Lex) module.

The compiler will check that the sharing use “symb.sig”;
specified in the declaration of Parselct really use “val.sig”;
is met by the actual argumets. use “symtbl.sig”;

: . . “1 . fe)) e
Exercise 14 What is wrong with the fol- "~ S1g

« -
lowing attempt to build the parser? Use “parse.sig

functor Parsel'ct(

structure Val = ValFet() structure SymTbl: SymThlSig
structure Lex: LexSig

structure TTable = sharing SymTbl. Sym = Lex. Sym
SymTblFct(structure IntMap=IntMapFet() and type SymTbl. Val. value = string) : ParseSig =
structure Val = Val struct
structure Sym = SymFct()
end

structure Lex = LexFct(SymFet())

structure Parser =
ParseFct(structure SymTbl = TTable

In this way one avoids repeating the same
structure Lex = Lex)

signature declaration in many files (and thus

also the problem of updating all copies if the
signature is changed).

16

2.9 Good Style

It is good practice to keep signatures as small
as possible. If one programs using functors
and signatures as described above then writ-
ing the body of a functor will reveal which
components of its formal parameters that
particular functor needs to know about.

Different functors will need different de-
tails. Rather than gradually extending a sin-
gle signature till it gets very large, one can use
the include specification to enrich an exist-
ing signature.

signature SmallTbl = sig ... end

signature BigThl =

sig

include SmallThl
datatype Debuglnfo = ...
val printInfo : unit->unit
end

2.10 Bad Style

Signature declarations can contain free struc-
ture and type identifiers.

Structure declarations can contain free
identifiers of any kind.

This allows you to write for example

structure Parser: ParseSig= ParseFect(...)

Unfortunately it also allows you to write
things like

structure Parser =

struct

structure Lex = Lex

structure MyPervasives = MyPervasives
structure FrrorReports = ErrorReports
structure PrintFcens = PrintFens
structure Table = Table

structure BigTable =BigTable
structure Auzr = Auz

fun f(...) =... Table.lookup ...
end
Here, the programmer has apparently

made some effort to show that the parser de-
pends on the structures listed at the begin-
ning. However, if he has missed out a couple
of structures from his list, it will have no ef-
fect on the declarations that follow, and so
one does not as a reader feel confident that
the list is exhaustive.

Moreover, when the reader wants to find
out what the type of the lookup function is,
he has to look in the declaration of the Table
structure. In case Table is constrained by a
signature, the search continues in the decla-
ration of the signature. Otherwise, one will
have to look at the code for lookup.

Most serious of all, when encountering the
call of lookup one has no idea whether lookup
has side effects that are important to other
structures. In that case, the value of struc-
turing code into structures and substructures
is purely cosmetic. The only reliable help it
gives you is a pointer to the structure in which
the identifier is declared.

One particular horror is the misuse of open.
Avaiable both in the core language and in
the modules language, open S'is a declaration

which has the effect of adding all the bindings

17

of the structure S to the current environment.
This is helpful, if one has a single structure
MyPervasives, say, which is used everywhere
in the project. But look at this:

structure Parser =

struct

structure Lex = Lex

open MyPervasives ErrorReports PrintFens
Table BigTable Aux

fun f(...) = ... lookup ...
end

Now finding lookup is reduced to pure
guesswork!

Exercise 15 For each of the above points
of criticism, consider to what extent it applies
if one programs with signatures and functors
only.

18

3 The Static Semantics
of Modules

The purpose of this lecture is to explain the
static semantics of modules. In particular, we
shall look into the details of the crucial con-
cepts SIGNATURE MATCHING and SHARING.

3.1 Elaboration

Consider the two following signatures, the
first of which stem from the MyTbl example
of Lecture 1.

sig

type table

exception Lookup

val lookup: table * Identifier.sym
=> Data. value

val update: table x Identifier. sym
* Data. value => table

end

sig

type table

exception Lookup

val lookup: table * string -=> real

val update: table *x string * real => table
end

In one sense, these signatures are very dif-
ferent; the meaning of the first one depends
on the free structures Data and Identifier,
whereas the second depends on the perva-
sives only. However, if Identifier.sym hap-
pens to be string and Data. value happens to
be real then the two expression are just dif-
ferent ways of expressing the same meaning.
In that sense, the two signatures turn out to
be equal.

19

To avoid such confusion concerning equal-
ity, it is often helpful to distinguish between
a SIGNATURE EXPRESSION (the syntactic ob-
ject) and a SIGNATURE (its meaning). The
transition from signature expressions to sig-
natures is called ELABORATION. We use the
word elaboration instead of evaluation, be-
cause, unlike evaluation, all elaboration can
The re-

sult of elaborating a signature expression de-

be done statically, by a compiler.

pends on the meaning of the identifiers oc-
curring free in the expression. In any given
context, there are infinitely many signature
expressions that elaborate to the same signa-
ture. It is even the case that in every con-
text, every signature expression elaborates to
infinitely many signatures, if it elaborates to
any at all. However, among these there will
always be some that are PRINCIPAL which
means that, in a certain technical sense, all
the others are instances of them, and one al-
ways takes a principal signature as the mean-
ing of a signature declared at top-level.

Elaboration applies to STRUCTURE EX-
PRESSIONS and FUNCTOR DECLARATIONS as
well, yielding STRUCTURES and FUNCTOR
SIGNATURES, respectively.

Essentially, the modules part of ML is a
language for computing these (abstract) sig-
natures, structures and functor signatures.
The purpose of this lecture is to explain the
principles that govern elaboration.

We shall not introduce a separate notation
for structures, signatures and functor signa-
tures. In many cases these are very similar
to the expressions from which they were ob-
tained, so we make do with the device of “dec-
orating” expressions with so-called names.
Names are semantic objects, completely dis-
tinct from identifiers; in the above examples,
string and Identifier. sym are both identifiers
which elaborate to the same type name.

3.2 Names

structure Stack =

struct

type elt = int

datatype stack = ST of elt list ref
val initStack = ST (refl 1)

end

structure StackUserl =
struct
structure Stackl = Stack

end
structure StackUser2 =
struct

structure Stack? = Stack

datatype stack = ST of elt list ref
end

All the following sharing equations hold:
StackUserl . Stackl = StackUser2. Stack2, elt
= nt, Stack. stack = StackUserl.
Stackl . stack. None of the following shar-
ing equations hold: StackUserl = StackUser2,
Stack. stack = StackUser2. stack

Sharing equations can be decided by deco-
rating programs with NAMES. There are two
kinds:

structure names: nl, n2,...,
ml,m2,...
1,12, ...,
s1,82,. ..,

unit, int, bool, —

type names:

Two structures SHARE if they are deco-
rated by the same structure name; two types
SHARE if they are decorated by the same type
name.

20

3.3 Decorating Structures

Each elaboration of a structure expression of
the form

struct ... end

yields a fresh structure, i.e. a structure

decorated by a new name. Therefore such
expressions are called GENERATIVE STRUC-
TURE EXPRESSIONS.

Each elaboration of a data type declaration
(datatype ...) yields a fresh type i.e., a type

decorated by a new name.

structure Stack,; =

struct

type elt;,; = int

datatype stacky = ST of elt list ref
val initStacky = ST(refl 1)

end

structure StackUserl 5 =
struct
structure Stackl ,; = Stack

end
structure StackUser?2,ss =
struct

structure Stack?,, = Stack

datatype stackios = ST of elt list ref
end

To be complete, one would have to dec-
orate each structure not merely by a name
but also with its decorated components and
subcomponents. (A structure expression in
the form of a functor application does not in
itself reveal the components of the resulting
structure.) However, to keep decorations to a
minimum, we shall usually not spell out the
decorated subcomponents.

3.4 Decorating Signatures

signature StackSig .1 5 5) =
5181

type elts

type stack s
val new, s : unit->stack

end

signature TmnspSig(mle) =
5181
type elts
type stacky
sharing type stacks = Stack . stacksy
val new, i : unit->stack

end

Bound names are collected at the signature
identifier.
thesis to indicate that they are merely place

holders.
The bound names of StackSig are ml, sl

They are listed between paren-

and s2. The free names of StackSig are unit
and —. The bound names of TranspSig are
ml and sl. The free names of TranspSig are
t1, unit and —.

Exercise 16 Consider

signature Symbol =

sig

type symbol

type value

sharing type value = int
end

Decorate this signature declaration with type
and structure names. How many bound

names are there? How many free?

If two structures are found to share by the
static analysis then they really are the same

21

at run-time. Therefore, when decorating sig-
natures one must make sure that if two struc-
tures are made to share (by being given the
same name) then any type or structure which
is visible in both structures must be made to
share as well.

Exercise 17 Consider the following signa-
tures most of which you have already seen in
Lecture 1.

signature ValSig =
sig

type value

end

signature SymSig =
sig

eqtype sym

val hash : sym->int
end

signature LexSig =

sig

structure Sym : SymSig
val getsym : unit=>Sym. sym

end

signature SymTblSig =
sig
structure Val: ValSig
structure Sym: SymSig
type table
val lookup:
table * Sym. sym=-> Val. value

end

signature ParseSig =

sig

structure Lex : LexSig
structure Thl : SymTblSig
sharing Lex. Sym = Tbl. Sym

type abstsyn
val parse : unit->abstsyn

end

Decorate these signatures. When one signa-
ture refers to another (for instance LexSig
refers to SymSig) you should put a full deco-
ration on the structure identifier (Sym), i.e. a
decoration which shows both a name and the
subcomponents of the structure. Full decora-
tions can be drawn as trees; in the example
at hand you can decorate Sym by

ml
Sy’V \Qc‘wh
sl sl — int
Make sure that you decorate shared substruc-
tures (for instance Sym in ParseSig) consis-
tently so as to represent that sharing of two

structures implies sharing of their substruc-
tures.

22

3.5 Signature Instantiation

structure Stack,; =

struct

type elt;,; = int

datatype stacky = ST of elt list ref
fun newypip—n () = ST(TGf[D

end

signature StackSigA 1 51,52y =
5181

type elts

datatype stacksy = ST of elt list ref
val new s unit->stack

end

Note that if we substitute nl for ml, int
for s1 and ¢1 for s2 in the decoration of
StackSigA then we get the decoaration of
Stack. We say that Stack is an instance
of StackSig. More generally, we say that a
structure is an INSTANCE of a signature if the
decoration of the former is obtained from the
decoration of the latter by performing a sub-
stitution of names for the bound names of
the signature (the free names of the signa-
ture must be left unchanged). The process of
substituting names for bound names is called
REALISATION.

structure Stack,; =

struct

type elt;,; = int

datatype stacky; = ST of elt list ref
fun newpit—n () = ST(TGf[D

end

signature StackSigB . 1) =

5181

type elts

datatype stacky; = ST of elt list ref
sharing type stacky = Stack . stacky
val new, pi_qs : unit->stack

end

Stack 1s an instance of StackSigB via the re-
alisation {m1 — nl,sl — int}.

structure OddSir,; =
struct

type elt;,; = int

val testy,, = false
end

signature WrongSig(mle) =
5181

type elts
val tests : elt

end

OddStr is not an instance of WrongSig, for
s1 would have to be realised by int (because
of elt) but then test is decorated by int in the
signature and by bool in the structure.

3.6 Signature Matching

Matching of a structure against a signa-
ture is a combination of two operations.
The first, signature instantiation (described

23

above), is concerned with instantiating the
bound names of the signature to the “real”
names of the structure. The second is con-
cerned with ignoring information in the struc-

ture which is not required by the signature.

structure Tree,; =
struct
datatype ’a treeyy = LEAF of ’a
| NODE of ’a tree * ’ a tree
type intlree; ;11 = inl tree
fun mazx(a:int, b:int) =
if a > bthena else b
fun depthi ;. (LEAF) =1
| depth(NODE(left, right))=
max(depth left, depth right)
end

signature TreeSig ;1 1 52) =
5181

type ’a treeg

type intTrees

fun depthy_o ;. intTree->int
end

A structure MATCHES a signature if the struc-
ture can be cut down to an instance of the
signature by

1. forgetting components;
2. forgetting polymorphism of variables.

Tree matches TreeSig. First perform the re-
alisation {ml +— nl,sl — t1,52 +— intt1} on
the signature. The resulting decoration can
be obtained from the decoration of Tree by

1. forgetting the constructors LFAF and
NODE

2. instantiating ‘at1 — int to int t1 — int
(i.e. the realisation of s2 — int)

Exercise 18 Let mytype be a type which
is declared in a structure and specified in a
signature. In which of the following cases can
the structure match the signature?

(1) mytype is declared as a datatype and
specified as a datatype.

(2) mytype is declared as a datatype and
specified as a type;

(3) mytype is declared as a type and spec-
ified as a type;

(4) mytype is declared as a type and spec-
ified as a datatype.

3.7 Signature Constraints

structure Tree: TreeSig =
struct ... end

In a structure declaration with an explicit sig-
nature constraint, the resulting view of the
declared structure is precisely the one given
by the instantiated signature.

In the example above, the resulting view
of Tree will hide the constructors NODE and
LEAF and the function max. Notice, how-
ever, that int Tree is decorated by the instance
of s2, i.e. by inttl, where t1 is the decora-
tion of ‘a tree. Consequently, Tree. intTree
and int Tree. tree now mean the same thing,
namely int t1. This sharing was obtained
through relisation — it was not explicit in
TreeSig.

In short, explicit signature constraints can
remove components and polymorphism, but
they do not affect existing sharing.

Here is an example of a structure declared

You

should convince youself that the structure re-

with an explicit signature constraint.

ally does match the signature.

signature SymSig =
sig

type sym

type code

sharing type code = int
val hash : sym->int
val mksym : string=>sym
val nameof : sym->string
end

structure Sym : SymSig =

struct

datatype sym = SYM of string * int
type code = int

fun convert(s: string) : code = ...
fun hash(SYM(s, n))=n

fun mksym(s) = SYM(s, convert s)
fun nameof(SYM(s,.))= s

end

Exercise 19 Complete the declaration of
convert.

Exercise 20 Declare a different structure
NewSym, also constrained by SymSig, such
that NewSym . sym shares with string. Which
of the following expressions are valid?
(1)
(2)

"a" ~ NewSym.mksym "d"
"a" "~ Sym.mksym "d"

24

3.8 Decorating Functors

Dynamically, the body of a functor is not
evaluated when the functor is declared but
it 1s evaluated once for each time the functor
is applied.

functor StackFct() =

struct

datatype stack = ST of int list ref
val data = ST(ref [1)

end
structure Stack! = StacklF'ct()

structure Stack? = StacklF'ct()

Since the two applications of StackFect create
two distinct references, Stack! and Stack?2
are different and must not be seen to share.

Now let us consider the problem of deco-
We start out
by decorating the body in the usual way.

rating StackFet with names.

However, each time we need a fresh name,
The
names that hence are accumulated are called
the GENERATIVE NAMES of the functor. The
generative names are bound in the sense that

we record it at the = in the first line.

they stand as place holders for fresh names
which we choose when we eventually apply
the functor. (Like the bound names in sig-
natures, we write generative names between
parenthesis; unlike the bound names of sig-
natures, generative names are written on the
right — because they concern the right side
only.)

In the case of nullary functors, i.e. functors
that take an empty argument, the structure
resulting from a functor application is deco-
rated by taking the decoration of the functor

body with each generative name replaced by
a fresh name.

functor StackFct() =(mn1.1)
struct, 1

datatype stacks = ST of int list ref
val datag = ST(ref [1)

end
structure Stackl! 7 = StackFct()

structure Stack?2,s = StackFct()

The

and Stack? show the top-most structure

Exercise 21 decorations of Stackl

name only. Complete the decorations.

Notice that Stackl and
Stack? do not share; not even the types
Stackl . stack and Stack2. stack share. Con-
sequently, the variables Stackl. data and
Stack?. data have different types and so the
type checker prevents one from mistaking the

one for the other.

3.9 External Sharing

Within the body of a functor one may refer to
identifiers (of any kind) declared in the con-
text of the functor. Such identifiers are said
to occur FREE in the functor. This results
in EXTERNAL SHARING, i.e. a decoration in
which some of the names stem from outside
the functor.

25

structure MyPervasives =
struct,;
datatype numsuy = NUM of int

end

functor StackFet' () =(m2)
struct,,»
structure MyPer,, = MyPervasives
type stack iistrep =
MyPer. num list ref
val dalay jiseref 2 Stack = ref []
end

structure Stackl!y = StackFct' ()

structure Stack2!, = StackFet' ()

Notice that external names are not genera-
tive; they are left unchanged when the func-
tor is applied.

Exercise 22 Which of the following shar-
ing equations hold?

Stackl' = Stack2';

Stackl'. MyPer = Stack2'. MyPer;

type Stackl’. stack = Stack2'. stack.

26

3.10 Functors with Arguments

signature SymSig ., 1) =
Sigml

eqtype symg
end

functor SymDir(Sym: SymSig) =(n2,s2)
struct,,»
datatype dirs = DIR of
Sym . sym~=>int
fun update ...
end

When decorating the body of a functor which
has an argument, we assume that we have a
structure (by the name of the formal param-
eter) which precisely matches the parameter
signature. We assume neither more compo-
nents nor more sharing than is specified in
the signature, for we want the functor to be
applicable to all actual argument structures
that match the formal parameter signature.

In the above example we simply assume
that the name of Sym is ml and that the
name of Sym.sym is sl (as those names are
not used of free structures elsewhere; in gen-
eral, one might have to rename some of the
bound names. Having used ml and sl we
simply start generating names from m2 and
s2 in the body.

structure Actual,, =

struct type sym = string

string

end

structure Result,; = SymDir(Actual)

Result receives a fresh structure name and
Result. dir a fresh type name. Note that

Actual matches SymSig.

3.11 Sharing Between Argu-

ment and Result

signature SymSig .1 1) =
Sigml

eqtype symg
end

functor SymDir(Sym: SymSig) =(n2)
struct,,.

type dirgi—in = Sym. sym=>int

fun update ...

end

The type name sl is shared between the ar-
gument and the body. When the functor is
applied, this sharing must be translated into
sharing between the actual argument and the
actual result.

structure Actual,; =

struct type sym ., = string

end

structure Result,; = SymDir(Actual)

Exercise 23 Complete the decoration of
Result.

Exercise 24 (1) Using the latest definition

of SymDir, is the following expression legal?

fn (d: Result. dir) => d 7abc”

(2) Same question, but for the earlier defi-
nition of SymDir.

A full decoration of the result of applying
a functor with one argument can be obtained
as follows:

1. Match the actual argument against the
formal parameter signature yielding a re-
alisation which maps bound names to
formal signature to names in the actual
argument;

2. Apply this realisation to the decoration
of the functor body;

3. also substitute fresh names for the gen-
erative names of the functor body.

3.12 Explicit Result

tures

Signa-

When a functor declaration contains a result
signature, the decoration of the functor dec-
laration proceeds as follows:

1. decorate the functor without the result
signature;

2. decorate the result signature. If one can
get an instance of the result signature
by removing components and polymor-
phicm from the decorated body, then
this instance is used as a formal result
instead of the decorated body; otherwise
the declaration is rejected.

This has the effect that upon application of
the functor, sharing is propagated as before,
but only the components and polymorphism
of the result signature are visible in the actual
result.

Exercise 25 Why is it not always the case
that obtaining R by

27

functor F'(S: SIG): SIG=

struct...end

structure R = I"(...)

is equivalent to obtaining R by
functor I'(S: SIG) =

struct...end

structure R: SIG = F(...)

(GGive a condition on SIG’ under which this
difference disappears.

28

4 Implementing an Interpreter in ML

The purpose of this lecture is to show a worked example of program development using ML
modules. We shall tackle the problem of implementing a small ML system. The system
is of course going to considerable simplified compared to a real ML, implementation.

We implement only a few of the language constructs found in real ML. The user of our
system will not get the ability to declare new types and data types; however, there will
be arithmetic on the build-in integers, if...then...else expressions, and indeed lists,
higher order functions and recursion, so it is far from a trivial language. We shall refer to
this language as Mini ML.

Moreover, the system will be an interpreter rather than a compiler. It still has a type-
checker, indeed we shall see how one can implement a restricted form of polymorphism.

The system is actually running and you can modify and extend it provided you have
access to an implementation and to the files listed in Appendix B. To make life easier for
you, we provide a parse functor which can parse a string (the Mini ML source expression)
into an ABSTRACT SYNTAX TREE, the shape of which will be defined below. The rest of
the interpreter works on abstract syntax trees.

The interpreter uses a TYPECHECKER to check the validity of input expressions and an
EVALUATOR to evaluate them. Initially, the typechecker and evaluator handle only a tiny
subset of Mini ML. In this lecture I shall show how one in successive steps can extend the
typechecker to handle polymorphic lists, variables and let expressions. In the practical
sessions you can extend the evaluator in the same manner (it is easier than extending the
typechecker).

The typechecker and the evaluator can be developed independently as long as you
do not change the signatures we provide. This will allow you to take the typechecker
functors I have written and plug into your own system as you improve the power of your
evaluator. Alternatively, you might want to modify or extend my typechecker functors,
and take over evaluator functors that other people write.

The source of the bare interpreter is in Appendix A. An overview of how to run the
systems is provided in Appendix B.

The development of the typechecker and the evaluator need not be in step. You can
disable either by assigning false to one of the variables tc and eval.

29

signature INTERPRETER=
sig
val interpret: string -> string
val eval: bool ref
and tc : bool ref
end;

The syntax of the language is as follows

exp = exp + exp
exp = exp
exp * exp
true
false
exp = exp
if exp then exp else exp
exp 1 exp
[6$p1,"',6$pn] (TLZO)
let o = exp in exp
let rec o = exp in exp
x
fnz => exp
exp (exp) (function application)
n (natural numbers)
(exp)

The abstract syntax of Mini ML is defined as a datatype in the signature EXPRESSION.
Exercise 1 Find this signature. What is the constructor corresponding to let expres-
sions?

We program with signatures and functors only. After the signatures, which we shall

not yet study, the first functor is the interpreter itself.

Exercise 2 Find this functor. Find the application of Ty.prType. Find it’s type. What
do you think Ty.prType is supposed to do? What is the type of abstsyn? What do you
think the evaluator is supposed to do when asked to evaluate something which has not

yet been implemented?

We shall now describe Version 1, the bare typechecker, and then proceed to the ex-
tensions.

30

4.1 VERSION 1: The bare Typechecker (Appendix A)

The first version is just able to type check integer constants and +. As signature TYPE
reveals, the type Type of types is abstract, but there are functions we can use to build basic
types and decompose them. unTypeInt is one of the latter; it is supposed to raise Type if
applied to any Mini ML type different from the int (however the type int is represented).
This is a common way of hiding implementation details, and it might be helpfull to look
at how functor Type produces a structure which matches the signature Type.

As revealed by signature TYPECHECKER, the typechecker is going to depend on the
abstract syntax and a Type structure. However, as you can see from the declaration of
functor TypeChecker, all the typechecker knows about the implementation of types is
what is specified by the signature TYPE. This allows us to experiment with the implemen-
tation of types to obtain greater efficiency without changing the typechecker, as we shall
see in the later stages. As you see from functor TypeChecker, all the typechecker is
capable of handling is integer constants and +.

Exercise 3 Modify the typechecker to handle true, false, and multiplication of inte-
gers.

Given the signature and functor declarations in Appendix A, one can build the system.
First we import the parser

use 'parser.sml";

and then we build the system by the following declarations (which can be read from file
buildl.sml).

structure Expression= Expression();
structure Parser= Parser(EXpression);
structure Value = Value();
structure Evaluator=
Evaluator(structure Expression= Expression
structure Value = Value);

structure Ty = Type();

structure TyCh=

TypeChecker(structure Ex = Expression
Ty) ;

structure Ty

structure Interpreter=
Interpreter(structure Ty= Ty

31

structure Value = Value
structure Parser = Parser
structure TyCh = TyCh

structure Evaluator = Evaluator);

open Interpreter;

4.2 VERSION 2: Adding lists and polymorphism

The first extension is to implement the type checking of lists. In Version 1 the type of
an expression could be inferred either directly (as in the case of true and false, or from
the type of the subexpressions (as in the case of the arithmetic operations). When we
introduce list, this is no longer the case. Consider for example the expression

if ([J = [9]) then 5 else 7

Suppose we want to type check ([1 = [9]) by first type checking the left subexpression
[1, then the right subexpression [9] and finally checking that the left and right-hand
sides are of the same type before returning the type bool. The problem now is that
when we try to type check [1 we cannot know that this empty list is supposed to be an
integer list. The typechecker therefore just ascribes the type *a 1list to [], where ’a
is a TYPE VARIABLE. The [9] of course turns out to be an int list. The typechecker
now “compares” the two types ’a list and int list and discovers that they can be
made the same by applying the substitution that maps ’a to int. Hence the type of the
expression [] depends not just on the expression itself, but also on the context of the
expression. The context can force the type inferred for the expression to become more
specific.

This “comparison” of types performed by the typechecker is called UNIFICATION and
is an algebraic operation of great importance in symbolic computing. Indeed, whole pro-
gramming languages have evolved around the idea of unification (PROLOG, for example).
Here is a couple of examples to illustrate how unifications works in the special case of
interest, that of unifying types.

[[0, [[51] 1 (1)

This expression is well-typed! The point is that the [] can be regarded as an int list
list. Let us see how the typechecker manages to infer the type int list list list for
(1). The typechecker first rewrites the expression to the equivalent:

1= & 01D =0 [2 [(2)
Checking the first argument of the topmost :: yields:

[l : ’al list (3)

32

To check (((5 :: [1) :: [1) :: [1), wefirst check the left-hand ((56 :: [1)
[1). To check this, we first check the left-hand (5 :: []). To check this, we first check
the left-hand 5, for which the typechecker wisely infer the type int. Continuing to the
right-hand part of (6 :: []), [] gets the type *a2 list. To check the :: of (5 ::
[1), we now unify int list and ’a2 list, which results in the substitution

S1(’a2) = int.

Thus the type of (6 :: []) is int list.
Returning to ((56 :: [1) :: [1),theright-hand [] first gets type >a3 1list which
by unification with int 1list list yields the substitution

S3(’a3) = int list.

Thus the type of ((6 :: [1) :: [J]) is int list list.
Returning to (((5 :: [1) :: [1) :: [1), the right-hand [] gets the type ’a4
list which by unification with int 1list list list yields the substitution

S3(’a4) = int list list

Thus the type of (((6 :: [1) :: [1) :: [])isint list list list.
Finally, returning to (2) and (3), we get to unify >al list with int list list list,
yielding the substitution
Sy(’al) = int list list.

The type of (2), and therefore the type of (1), is thus found to be int 1ist list list.
Note that
[[4] , [[51]]

is NOT well-typed. In an attempt to compute Sy, we would now be unifying int list
list and int list list list and that gives a unification error.

To implement all this, we first extend the TYPE signature and introduce a new signa-
ture, UNIFY:

signature TYPE =

sig
eqtype tyvar
val freshTyvar: unit -> tyvar

val mkTypeTyvar: tyvar -> Type
and unTypeTyvar: Type -> tyvar

val mkTypelist: Type -> Type
and unTypelList: Type -> Type

33

type subst

val Id: subst

(* the identify substitution;

*)

val mkSubst: tyvar*Type -> subst

(* make singleton substitution; *)

val on :
(* application;

val prType: Type->string
end

signature UNIFY=
sig
structure Type: TYPE
exception NotImplemented of
exception Unify

subst * Type -> Type

*)

(* printing *)

string

val unify: Type.Type * Type.Type -> Type.subst

end;

The nice thing is that we can extend the typechecker without knowing anything about
the inner workings of unification, simply by including a formal parameter of signature

UNIFY in the typechecker functor:

functor TypeChecker
(...
structure Ty: TYPE
structure Unify: UNIFY
sharing Unify.Type =
)=

struct

Ty

infix on
val (op on) = Ty.on

new)

fun tc (exp: Ex.Expression): Ty.Type =
(case exp of
| Ex.LISTexpr [] =>
let val new = Ty.freshTyvar ()
in Ty.mkTypeList(Ty.mkTypeTyvar
end
| Ex.CONSexpr(el,e2) =>

34

let val t1 tc el
val t2 tc e2
val new = Ty.freshTyvar ()

val newt= Ty.mkTypeTyvar new
val t2’ = Ty.mkTypeList newt
val S1 = Unify.unify(t2, t2°)
handle Unify.Unify=>
raise TypeError(e2,"expected list type'")

val S2 = Unify.unify(S1 on newt,S1 on t1)
handle Unify.Unify=>
raise TypeError(exp,
"element and list have different types")
in S2 on (S1 on t2)
end

Jhandle Unify.NotImplemented msg => raise NotImplemented msg

end; (*TypeCheckerx*)

We also have to extend the Type functor to meet the enriched TYPE signature. The
easiest way of doing this is

functor Type() :TYPE =
struct

type tyvar = int

val freshTyvar =

let val r= ref 0 in fn()=>(r:= 'r +1; 'r) end

datatype Type = INT
| BOOL
| LIST of Type
| TYVAR of tyvar

fun mkTypeTyvar tv = TYVAR tv
and unTypeTyvar(TYVAR tv) = tv
| unTypeTyvar _ = raise Type
fun mkTypeList(t)=LIST t
and unTypeList(LIST t)= t
| unTypeList(_)= raise Type

35

type subst = Type -> Type
fun Id x = x

fun mkSubst(tv,ty)=
let fun su(TYVAR tv’)= if tv=tv’ then ty else TYVAR tv’
| su(INT) = INT
| su(BOOL)= BOOL
| su(LIST ty’) = LIST (su ty’)
in su
end

fun on(S,t)= S(t)

fun prType ...
| prType (LIST ty) = "(" "~ prType ty ~ ")list"
| prType (TYVAR tv) = "a" "~ makestring tv

end;

Exercise 4 Extend Version 2 to handle equality. All you have to do is to fill in the
relevant case in the definition of the function tc. (See appendix B about how you get the
source of Version 2).

4.3 VERSION 3: A different implementation of types

Version 3 arises from Version 2 by replacing the Type functor by a different implementation
of types. The idea is that istead of having substitutions as functions, we can implement
type variables by references (pointers) and then do substitutions directly by assignments.

In case you have not seen the reserved word withtype before, withtype is used to
declare a type abbreviaton locally within a datatype declaration.

functor ImpType() :TYPE =
struct
datatype ’a option = NONE | SOME of ’a

INT

datatype Type =
| BOOL
I
I

LIST of Type
TYVAR of tyvar

withtype tyvar = Type option ref

36

type tyvar = Type option ref
fun freshTyvar() = ref (NONE)
exception Type

fun mkTypeInt() = INT
and unTypelInt (INT)=()

| ...
| unTypeInt(TYVAR(ref (SOME t)))= unTypelnt t
| unTypeInt _ = raise Type

type subst = unit
val Id = ();
exception MkSubst;

fun mkSubst(tv,ty)=
case tv of
ref (NONE) => tv:= (SOME ty)
| ref(SOME t) => raise MkSubst

fun on(S,t)=t

fun prType ...

| prType (TYVAR (ref NONE)) = "a?"

| prType (TYVAR (ref (SOME t))) = prType t
end;

We can now build two systems at the same time and compare the efficiency of the
two implementations. The nice thing is that we do not have to modify the typechecker
functor at all, nor do we even have to modify the unification functor; we can just extend
the final sequence of structure declarations to use both implementations of types.

Exercise 5 When I did this, I found (to my surprise), that the functional version in
some cases was twice as fast, and never slower than the imperative variant. The relative
performance of the two vary greatly from expression to expression. Can you find an
expression for which the imperative version really is faster? (See Appendix B for how to
get hold of the source of Version 3). Be careful with generating very demanding tasks for
the ML system; you can make it crash!

37

ML implementors normally opt for the imperative version. In all fairness, the above
comparison ignores that composing substitutions is much easier in the imperative version
than it i1s in the applicative version; in the fragment of Mini ML considered so far, we
have not had to compose substitutions.

One should not be too concerned with performance issues at too early a stage. It can
be surprisingly difficult to predict where efficiency is most needed, and it is much more
important, at first, to get the overall structure of the system right. It was important,
for example, that we did NOT make the constructors of the datatype Type visible in the
signature TYPE, and that we wrote the unification algorithm in a way which does not use
the internal structure of Type. Had we not done this, we would not have been able to
switch from one implementation to another that easily, and therefore chances are that we
would chosen the imperative one, assuming that it was the more efficient one, without
ever trying the “obvious” applicative implentation.

4.4 VERSION 4: Introducing variables and let

We now extend Version 3 by implementing the type checking of 1let expressions and of
identifiers.
The typechecker function tc now has to take TWO arguments,

tc(TE, e)

where e is an expression and TE is a TYPE ENVIRONMENT, which maps variables occurring
free in e to TYPE SHEMES. The definition of what a type scheme is will be given below;
for now it suffices to know that every type can be regarded as a type scheme.

To take an example, if TE maps x to int and y to int, then tc will deduce the type
int for the expression x+y. (However, if TE mapped y to bool, there would be a type
error.)

The fact that we can bind variables to expressions whose types have been inferred to
contain type variables means that we get type variables in the type environment. For
instance, to type check

let x =[] in 4 :: x end

we first check [] yielding the type ’al 1list, say. Then we bind x to the type scheme
V’al.’allist. Here the binding V ’al of *al indicates that when we look up the the type
of x in the type environment, we return a type obtained from the type scheme V’al.’a1
list by instantiating the bound variables (here just >a1) by fresh type variables. In our
example, when we look up x in the type environment during the checkingof 4 :: x, we
instantiate *al to a fresh type variable ’a2, say, yielding the type *a2 list for x. Thus
we get to unify int list against a2 list, yielding the substitution of int for ’a2.

Throughout the body of the let, x will be bound to V’al.’al 1ist in the type
environment. Since we take a fresh instance of this type scheme each time we look up x,
we can use x both as an int list and as an int list list, say:

38

let x = [] in (4::x)::x end

Exercise 6 Assuming that you instantiate the bound ’al to >a3 when you meet the last
occurrence of x, what two types should be unified, and what is the resulting substitution
on ’a3?

The variable x is an example of POLYMORPHISM: after x has been declared, an oc-
currence of x can potentially be given infinitely many types: int list, bool list, int
list list, and so on, all captured by the type scheme V ’al.’al 1ist. In ML, a TYPE
SCHEME always takes the form Vaq--- ay,.7, (n > 0), where aq,..., a, are type variables
and 7 is a type. In the fragment of Mini ML considered so far, it will always be the case
that any type variable occurring in 7 is amongst the a4, ..., a,, but when one introduces
functions and application, this no longer is the case.

Here is how we implement variables and let. We first extend the TYPE signature:

signature TYPE =
sig

type TypeScheme

val instance: TypeScheme -> Type
val close: Type -> TypeScheme

end

Version 1 (Appendix A) already contains a signature for environments (find it). It
was actually intended for the practical where you need it to extend the evaluator, but we
can make use of it to implement type environments. The signature of the typechecker
can be left unchanged, but we need to change the functor that builds the typechecker by
including the environment management among the formal parameters:

functor TypeChecker
(structure Ex: EXPRESSION
structure Ty: TYPE
structure Unify: UNIFY
sharing Unify.Type = Ty
structure TE: ENVIRONMENT
)=
struct
infix on
val (op on) = Ty.on
structure Exp = Ex
structure Type = Ty

39

exception NotImplemented of string
exception TypeError of Ex.Expression * string

fun tc (TE: Ty.TypeScheme TE.Environment, exp: Ex.Expression): Ty.Type =
(case exp of

Ex.BOOLexpr b => Ty.mkTypeBool()

Ex.NUMBERexpr _ => Ty.mkTypeInt ()

Ex.SUMexpr(el,e2) => checkIntBin(TE,el,e2)

Ex.DIFFexpr(el,e2) => checkIntBin(TE,el,e2)

Ex.PRODexpr(el,e2) => checkIntBin(TE,el,e2)

Ex.LISTexpr [] =>

let val new = Ty.freshTyvar ()

in Ty.mkTypeList(Ty.mkTypeTyvar new)
end
| Ex.LISTexpr(e::es) => tc (TE, Ex.CONSexpr(e,Ex.LISTexpr es))
| Ex.CONSexpr(el,e2) =>
let val t1 = tc(TE, el)
val t2 = tc(TE, e2)
val new = Ty.freshTyvar ()
val newt= Ty.mkTypeTyvar new
val t2’ = Ty.mkTypeList newt
val S1 = Unify.unify(t2, t2°)
handle Unify.Unify=>
raise TypeError(e2,"expected list type'")

val S2 Unify.unify(S1 on newt,S1 on t1)
handle Unify.Unify=>
raise TypeError(exp,"element and list have different types'")
in S2 on (S1 on t2)
end
| Ex.EQexpr _ => raise NotImplemented "(equality)"
| Ex.CONDexpr _ => raise NotImplemented "(conditional)"
| Ex.DECLexpr(x,el,e2) =>
let val t1 = tc(TE,el);
val typeScheme = Ty.close(t1)
in tc(TE.declare(x,typeScheme,TE), e2)
end
| Ex.RECDECLexpr _ => raise NotImplemented "(rec decl)"
| Ex.IDENTexpr x =>
(Ty.instance(TE.retrieve(x,TE))
handle TE.Retrieve _ =>

raise TypeError(exp,"identifier " =~ x ~ " not declared"))

| Ex.LAMBDAexpr => raise NotImplemented "(function)"

40

| Ex.APPLexpr _ => raise NotImplemented "(application)"
Jhandle Unify.NotImplemented msg => raise NotImplemented msg

and checkIntBin(TE,el,e2) =
let val t1 tc(TE,el)
val = Ty.unTypelnt t1

handle Ty.Type=> raise TypeError(el,"expected int")
val t2 = tc(TE,e2)
val _ = Ty.unTypelnt t2
handle Ty.Type=> raise TypeError(e2,"expected int")
in Ty.mkTypeInt()

end;
fun typecheck(e) = tc(TE.emptyEnv,e)

end; (*TypeCheckerx*)

Then we extend the Type functor to match the TYPE signature:

functor Type() :TYPE =
struct

datatype TypeScheme = FORALL of tyvar list * Type

fun instance(FORALL (tyvars,ty))=
let val old_to_new_tyvars = map (fn tv=>(tv,freshTyvar())) tyvars
exception Find;
fun find(tv,[])= raise Find
| find(tv, (tv’,new_tv)::rest)=
if tv=tv’ then new_tv else find(tv,rest)
fun ty_instance INT = INT
| ty_instance BOOL = BOOL
| ty_instance (LIST t) = LIST(ty_instance t)
| ty_instance (TYVAR tv) =
TYVAR(find(tv,old_to_new_tyvars)
handle Find=> tv)

in
ty_instance ty
end

41

fun close(ty)=
let fun fv(INT) = []
| fv(BOOL)= []
| fv(LIST t) = fv(t)
| fv(TYVAR tv) = [tv]
in FORALL(fv ty,ty)
end

end;

Finally, the system is re-built as in Version 2, except that we have to provide and link
in an Environment functor which matches ENVIRONMENT.

Exercise 7 Extend Version 4 with if .. then .. else. (This extension has no
subtle implications for the type checking.)

Exercise 8 [For the extra keen] Extend Version 4 to cope with lambda abstraction
(fn) and application. First, you have to introduce arrow types with constructors and
destructors. Then you have to change the type of close so that it takes two arguments,
namely a type environment and a type. It should return the type scheme that is obtained
by quantifying on all the type variables that occur in the type but do not occur free in
the type environment.

Then you can modify the type checker. When you type check a lambda abstraction,
you just bind the formal parameter to the trivial type scheme which is just a fresh type
variable (no quantified variables). Thus the type environment can now contain type
schemes with free type variables.

An application tc(TE,e) now yields two arguments, namely a type ¢ and a substitu-
tion 55 the idea is that if you apply the substitution S to the type environment TE, which
now can contain free type variables, the expression e has the type . When an expression
consists of more than one subexpression, the type environment gradually becomes more
and more specific by applying the substitutions produced by the checking of the subex-
pressions one by one. Moreover, the substitution returned from the whole expression is
the composition of these individual substitutions. (You have to extend the TYPE signature
(and the Type functor) with composition of substitutions.

Finally, you can extend the unification algorithm to cope with arrow types. (This will
also use composition of substitutions.)

4.5 Acknowledgement

The parser and evaluator and all the signatures related to them are due to Nick Rothwell.

42

Appendix A: The bare Interpreter

(* interpl.sml : VERSION 1: the bare interpreter *)

signature INTERPRETER=
sig
val interpret: string -> string
val eval: bool ref
and tc : bool ref
end;

(* syntax *)

signature EXPRESSION =
sig
datatype Expression =

SUMexpr of Expression * Expression |
DIFFexpr of Expression * Expression |
PRODexpr of Expression * Expression |
BOOLexpr of bool |
EQexpr of Expression * Expression |
CONDexpr of Expression * Expression * Expression
CONSexpr of Expression * Expression |
LISTexpr of Expression list |
DECLexpr of string * Expression * Expression |
RECDECLexpr of string * Expression * Expression
IDENTexpr of string |
LAMBDAexpr of string * Expression |
APPLexpr of Expression * Expression |
NUMBERexpr of int

end

(* parsing *)
signature PARSER =
sig

structure E: EXPRESSION

exception Lexical of string
exception Syntax of string

43

val parse: string -> E.Expression
end

(* environments *)

signature ENVIRONMENT =

sig
type ’object Environment

exception Retrieve of string

val emptyEnv: ’object Environment
val declare: string * ’object * ’object Environment
-> ’object Environment
val retrieve: string * ’object Environment -> ’object
end

(x evaluation *)
signature VALUE =
sig
type Value
exception Value

val mkValueNumber: int -> Value
and unValueNumber: Value -> int

val mkValueBool: bool -> Value
and unValueBool: Value -> bool

val ValueNil: Value

val mkValueCons: Value * Value -> Value
and unValueHead: Value -> Value
and unValueTail: Value -> Value

val eqValue: Value * Value -> bool

val printValue: Value -> string
end

signature EVALUATOR =
sig

44

structure Exp: EXPRESSION

structure Val: VALUE

exception Unimplemented

val evaluate: Exp.Expression -> Val.Value
end

(* type checking *)
signature TYPE =
sig
type Type

(*constructors and decstructorsx)
exception Type
val mkTypelnt: unit -> Type
and unTypelInt: Type -> unit

val mkTypeBool: unit -> Type
and unTypeBool: Type -> unit

val prType: Type->string
end

signature TYPECHECKER =
sig
structure Exp: EXPRESSION
structure Type: TYPE
exception NotImplemented of string
exception TypeError of Exp.Expression * string
val typecheck: Exp.Expression -> Type.Type
end;

(* the interpreterx)

functor Interpreter

(structure Ty: TYPE

structure Value : VALUE

structure Parser: PARSER

structure TyCh: TYPECHECKER

structure Evaluator:EVALUATOR

sharing Parser.E = TyCh.Exp = Evaluator.Exp

and TyCh.Type = Ty

45

and Evaluator.Val = Value
): INTERPRETER=

struct
val eval= ref true (* toggle for evaluation *)
and tc = ref true (* toggle for type checking *)
fun interpret(str)=
let val abstsyn= Parser.parse str
val typestr= if !tc then
Ty.prType(TyCh.typecheck abstsyn)
else "(disabled)"
val valuestr= if !eval then
Value.printValue(Evaluator.evaluate abstsyn)
else "(disabled)"

in valuestr = " : " ~ typestr
end
handle Evaluator.Unimplemented =>
"Evaluator not fully implemented"
| TyCh.NotImplemented msg =>
"Typechecker not fully implemented " "~ msg

| Value.Value => "Run-time error"

| Parser.Syntax msg => "Syntax Error: " "~ msg
| Parser.Lexical msg=> "Lexical Error: " " msg
I

TyCh.TypeError(_,msg)=> "Type Error: " ~ msg
end;

(* the evaluator *)

functor Evaluator
(structure Expression: EXPRESSION
structure Value: VALUE) :EVALUATOR=

struct
structure Exp= Expression
structure Val= Value
exception Unimplemented

local
open Expression Value
fun evaluate exp =
case exp
of BOOLexpr b => mkValueBool b

46

| NUMBERexpr i => mkValueNumber i
| SUMexpr(el, e2) =>

let val el’ = evaluate el

val e2’ = evaluate e2
in
mkValueNumber (unValueNumber el’ +
unValueNumber e2’)
end

| DIFFexpr(el, e2) =>
let val el’ = evaluate el

val e2’ evaluate e2
in
mkValueNumber (unValueNumber el’ -
unValueNumber e2’)

end

| PRODexpr(el, e2) =>
let val el’ = evaluate el

val e2’ evaluate e2
in
mkValueNumber (unValueNumber el’ *
unValueNumber e2’)

end

| EQexpr _ => raise Unimplemented

| CONDexpr _ => raise Unimplemented

| CONSexpr _ => raise Unimplemented

| LISTexpr _ => raise Unimplemented

| DECLexpr _ => raise Unimplemented

| RECDECLexpr _ => raise Unimplemented
| IDENTexpr _ => raise Unimplemented

| LAMBDAexpr _ => raise Unimplemented
| APPLexpr _ => raise Unimplemented

in
val evaluate = evaluate
end
end;

(* the typechecker *)

functor TypeChecker

47

(structure Ex: EXPRESSION
structure Ty: TYPE)=

struct

structure Exp = Ex
Ty

struct

ure Type =

exception NotImplemented of string

exception TypeError of Ex.Expression * string

fun tc
case
Ex

Ex

Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.

Ex.
Ex.
Ex.

(exp: Ex.Expression): Ty.Type =

exp of

.BOOLexpr b => raise NotImplemented

DIFFexpr
PRODexpr
LISTexpr
CONSexpr
EQexpr _
CONDexpr
DECLexpr

NUMBERexpr _
SUMexpr(el,e2) => checkIntBin(el,e2)

"(boolean constants)"
=> Ty.mkTypeInt ()

=> raise NotImplemented "(minus)"
=> raise NotImplemented "(product)"
=> raise NotImplemented "(lists)"
=> raise NotImplemented "(lists)"

=> raise NotImplemented "(equality)"

=> raise NotImplemented "(conditional)"
=> raise NotImplemented "(declaration)"

.RECDECLexpr _ => raise NotImplemented " (rec decl)"

IDENTexpr

LAMBDAexpr _
APPLexpr _

=> raise NotImplemented "(identifier)"
=> raise NotImplemented "(function)"
=> raise NotImplemented "(application)"

and checkIntBin(el,e2) =

let

end;

val typecheck = tc

end; (*TypeCheckerx*)

val t1

tc el

val = Ty.unTypelnt t1

handle Ty.Type=>

raise TypeError(el,"expected int")
val t2 = tc e2
val = Ty.unTypelnt t2

handle Ty.Type=>

raise TypeError(e2,"expected int")
in Ty.mkTypeInt()

48

(* the basics -- nullary functors *)

functor Type() :TYPE =
struct

datatype Type = INT

| BOOL

exception Type

fun mkTypeInt() = INT
and unTypelInt (INT)=()
| unTypeInt(_)= raise Type

fun mkTypeBool() = BOOL
and unTypeBool (BOOL)=()
| unTypeBool(_)= raise Type

fun prType INT = "int"
| prType BOOL= "bool"
end;

functor Expression(): EXPRESSION =
struct
type ’a pair = ’a * ’a

datatype Expression =
SUMexpr of Expression pair |
DIFFexpr of Expression pair |
PRODexpr of Expression pair |
BOOLexpr of bool |
EQexpr of Expression pair |
CONDexpr of Expression * Expression * Expression
CONSexpr of Expression pair |
LISTexpr of Expression list |
DECLexpr of string * Expression * Expression |
RECDECLexpr of string * Expression * Expression
IDENTexpr of string |
LAMBDAexpr of string * Expression |
APPLexpr of Expression * Expression |
NUMBERexpr of int

49

end;

functor Value(): VALUE =
struct
type ’a pair = ’a * ’a

datatype Value = NUMBERvalue of int |
BOOLvalue of bool |
NILvalue |
CONSvalue of Value pair

exception Value

val mkValueNumber = NUMBERvalue
val mkValueBool = BOOLvalue

val ValueNil = NILvalue
val mkValueCons = CONSvalue

fun unValueNumber (NUMBERvalue(i)) = i
unValueNumber(_) = raise Value

fun unValueBool(BOOLvalue(b)) = b |
unValueBool(_) = raise Value

fun unValueHead (CONSvalue(c, _)) = c
unValueHead(_) = raise Value
fun unValueTail(CONSvalue(_, c)) = c

unValueTail(_) = raise Value
fun eqValue(cl, c2) = (cl = c2)

(* Pretty-printing *)
fun printValue(NUMBERvalue(i)) = makestring(i) |

printValue(BOOLvalue(true)) = "true" |

printValue(BOOLvalue(false)) = "false" |

printValue(NILvalue) = "[]" |

printValue(CONSvalue(cons)) = "[" ~
printValuelList(cons) ~ "]"

and printValueList(hd, NILvalue) = printValue(hd) |

printValueList(hd, CONSvalue(tl)) =

printValue(hd) ~ ", " ~ printValueList(tl) |

30

printValuelList(_) = raise Value
end;

51

Appendix B: Files

The following files are available in the directory /usr/cheops/mads/course
e interpl.sml Version | (as included in Appendix A).
e interp2.sml --- interp4.sml The other versions.

buildl.sml the structure declarations needed to build Version 1.

build2.sml --- build4.sml Similarly for the other versions.

e parser.sml The parser functor.

To build Version 3, say, you type the following (assuming you have copied the files to
your directory):

use "interp3.sml";
use 'parser.sml";
use "build3.sml";

Since the parser functor is completely closed, you dont have to include it more than

once in every session, although you will probably want to build your system several times
while you experiment with the extensions.

52

