
CMSC 22620
Spring 2009

Implementation
of

Computer Languages

Homework 1
Due April 14, 2009

Recall the CPS conversion from class that translates from untyped λ-calculus to a continuation-
passing style version of the λ-calculus. We can represent these languages with the following SML
modules:

structure Lambda : sig
type var
datatype exp = Var of var

| Abs of var * exp
| App of exp * exp

end = ...

structure CPS : sig
type var = Lambda.var
datatype value = Var of var

| Abs of (var list * exp)
and exp = Value of value

| App of value * value list
end = ...

Note that the CPS representation allows multiple-argument functions. The Danvy-Filinski CPS
conversion that handles tail recursion is implemented as follows:

structure L = Lambda
structure C = CPS

fun cvt (L.Var x, k : C.value -> C.exp) = k (C.Var x)
| cvt (L.Abs(x, e), k) = let

val k’ = C.fresh()
in

k (C.Abs([x, k’], tailCvt(e, C.Var k’)))
end

| cvt (L.App(e1, e2), k) = let
val a = C.fresh()
in

cvt(e1, fn m => cvt(e2,
fn n => C.App(m, [n, C.Abs([a], k(C.Var a))])))

end



and tailCvt (L.Var x, k : C.value) = C.App(k, [C.Var x])
| tailCvt (L.Abs(x, e), k) = let

val k’ = C.fresh()
in

C.App(k, [C.Abs([x, k’], tailCvt(e, C.Var k’))])
end

| tailCvt (L.App(e1, e2), k) = let
val a = C.fresh()
in

cvt(e1, fn m => cvt(e2, fn n => C.App(m, [n, k])))
end

fun transform e = cvt (e, fn x => C.Value x)

Assume that we extend these languages with constants and conditionals. For the Lambda represen-
tation, we add the following constructors to the exp type:

datatype exp = If of exp * exp * exp
| Const of const
| ...

The new CPS representation is then

datatype value = Var of var
| Abs of (var list * exp)
| Const of const

and exp = Value of value
| App of value * value list
| If of value * exp * exp

Extend the cvt and tailCvt functions to handle constants and conditionals.

2


