
CMSC 22620
Spring 2009

Implementation
of

Computer Languages

Handout 3
April 14, 2009

x86-64 Instructions and ABI

1 Introduction

You will be generating assembly code for the x86-64 architecture, which is the 64-bit extension
to Intel’s venerable x86 architecture. Most instructions in this architecture have two operands: a
source and a destination that specifies the second operand and the location of the result. Operands
can be registers, immediate values, or memory locations, but not all combinations are supported.
The code you generate will be in the so-called AT&T syntax, which places the source on the left
and the destination on the right.1 Most instruction names include a single-letter suffix that specifies
the size of the operands. We will be using the 64-bit instructions, which use the letter “q” (for
quadword) as a suffix. The other suffixes are b for 8 bits, w for 16 bits, and l for 32 bits.

The sample code includes the Instruction module that supports a subset of x86-64 instruc-
tions. The implementation of this module checks for the well-formedness of operands, and will
raise an exception when it detects an error.

2 Registers

The x86-64 has sixteen 64-bit registers. In the AT&T assembler syntax registers are denoted with a
leading “%” character. Some registers have special roles, for example the %rdx and %rax register
pair is used in the idivq instruction. The table in Figure 1 lists the registers and describes their
use. It also marks those registers that are callee save.

3 Calling conventions

Both Mac OS X and Linux follow the System V ABI for their x86-64 calling conventions.2 There
are three x86-64 instructions used to implement procedure calls and returns.

• The call instruction pushes the address of the next instruction (i.e., the return address) onto
the stack and then transfers control to the address specified by its operand.

• The leave instruction sets the stack pointer (%rsp) to the frame pointer (%rbp) and then
sets the frame pointer to the saved frame pointer, which is popped from the stack.

1Note that this is the opposite of the Intel syntax, so be careful when reading descriptions of the instructions.
2The ABI specification is available at http://www.x86-64.org/documentation/abi.pdf.

Register Callee Save Description
%rax result register; also used in idiv and

imul instructions.
%rbx yes miscellaneous register
%rcx fourth argument register
%rdx third argument register; also used in

idiv and imul instructions.
%rsp stack pointer
%rbp yes frame pointer
%rsi second argument register
%rdi first argument register
%r8 fifth argument register
%r9 sixth argument register
%r10 miscellaneous register
%r11 miscellaneous register

%r12-%r15 yes miscellaneous registers

Figure 1: The x86-64 general-purpose registers

• The ret instruction pops the return address off the stack and jumps to it.

The registers %rbp, %rbx, and %r12-%r15 are callee save.

3.1 Arguments

The first six arguments to a function are passed in registers. Any additional arguments are passed
on the stack in the memory-argument area (see Figure 2). The %rax register is used to return the
first result and the %rdx register is used to return a second result.

3.2 Stack frames

The stack grows from higher addresses to lower addresses. The ABI uses two registers to access
the stack: the frame pointer (%rbp), which points to the base of the frame, and the stack pointer
(%rsp), which points to the top of the frame. Figure 2 shows the layout of the frame. Normally,
the frame pointer is used to address data in the frame, such as the incoming parameters and local
variables.

The ABI requires that stack frames be aligned on 16-byte boundaries. Specifically, the end of
the argument area (%rbp+16) must be a multiple of 16. This requirement means that the frame
size should be padded out to a multiple of 16 bytes.

3.3 Procedure-calling protocol

The protocol for procedure calls can be broken into four pieces; two each for the caller and callee.
We describe these in the order that the happen.

2

locals etc.

saved %rbp register
saved return address
memory argument 0

memory argument n
...

Previous frame

Current frame

(%rsp)
outgoing arguments

8(%rbp)

-8(%rbp)

(%rbp)

16(%rbp)

8n+16(%rbp)

Figure 2: Stack-frame layout

3.3.1 Procedure call

The caller-side of a procedure call involves saving any caller-save registers that are live across the
call, loading the arguments into the appropriate registers and stack locations, and then executing
the call instruction. In the Figure 2, the stack frame includes an area for outgoing arguments.
It is also possible to allocate this memory for each call, in which case the caller is responsible for
deallocating it upon return.

3.3.2 Procedure entry

Upon entry, a callee needs to initialize its linkage and stack frame. This initialization is accom-
plished by the following sequence:

pushq %rbp
movq %rsp,%rbp
subq $N,%rsp

where N is the size of the callee’s stack frame. Once the linkage is established, the callee may
choose to save any callee-save registers that it uses.

3.3.3 Procedure exit

Once the procedure has finished execution, the callee performs the procedure-exit protocol. This
protocol involves putting the result in %rax, deallocating the stack frame, and returning control to
the caller. The following code sequence handles the latter two steps:

3

leave
ret

3.3.4 Procedure return

If the caller is allocating stack space for arguments on a per-call basis, then it is responsible for
deallocating the space upon return.

4 Instructions

For the project, you use a small subset of the x86-64 instructions (mostly the 64-bit integer opera-
tions plus control-flow operations).

4.1 Operands

There are three basic kinds of operands: registers, immediates (which are numbers preceded by the
“$” character in assembly code), and memory addresses. We use reg to denote registers, imm32
and imm64 to denote immediates, and mem to denote memory addresses in the discussion below.
Since we are computing with 64-bit values, 32-bit immediates (imm32) are sign-extended to 64
bits.

The x86-64 supports a number of different modes for addressing memory. The following table
describes the syntax of these modes and the effective addresses that they define:

Syntax Address Description
(reg) reg Base addressing
d(reg) reg + d Base plus displacement addressing

d(reg , s) (s× reg) + d Scaled index plus displacement; s ∈
{2, 4, 8}

d(reg1, reg2, s) reg1 + (s× reg2) + d Base plus scaled index and displacement;
s ∈ {2, 4, 8}

In this syntax, d and s are numbers (without the leading “$”).

4.2 Opcodes

The following table lists the x86-64 instructions that you will need for the project. For each instruc-
tion, we have included the various formats that are supported. and a description of the operation.

addq reg1, reg2 reg2 ← reg2 + reg1

addq reg ,mem M[mem]← M[mem] + reg
addq imm32 , reg reg ← reg + imm32
addq imm32 ,mem M[mem]← M[mem] + imm32
addq mem, reg reg ← reg + M[mem]

4

andq reg1, reg2 reg2 ← reg2 AND reg1

andq reg ,mem M[mem]← M[mem] AND reg
andq imm32 , reg reg ← reg AND imm32
andq imm32 ,mem M[mem]← M[mem] AND imm32
andq mem, reg reg ← reg AND M[mem]
call lab procedure call
call ∗reg procedure call (register indirect)
call ∗(reg) procedure call (memory indirect)
cmpq reg1, reg2 ccode ← TEST(reg2 − reg1)
cmpq reg ,mem ccode ← TEST(M[mem]− reg)
cmpq mem, reg ccode ← TEST(reg −M[mem])
cmpq imm32 , reg ccode ← TEST(reg − imm32)
cmpq imm32 ,mem ccode ← TEST(M[mem]− imm32)
idivq reg %rax← %rdx : %raxDIV reg

%rdx← %rdx : %raxMOD reg
idivq mem %rax← %rdx : %raxDIV M[mem]

%rdx← %rdx : %raxMOD M[mem]
imulq reg1, reg2 reg2 ← reg2 × reg1

imulq mem, reg reg ← reg ×M[mem]
imulq imm32 , reg reg ← reg × imm32
ja lab jump to lab if above (CF = 0 ∧ ZF = 0)
jae lab jump to lab if above or equal (CF = 0)
jb lab jump to lab if below (CF = 1)
jbe lab jump to lab if below or equal (CF = 1∧ZF = 1)
je lab jump to lab if equal (ZF = 1)
jg lab jump to lab if greater (ZF = 0 ∧ SF = OF)
jge lab jump to lab if greater or equal (SF = OF)
jl lab jump to lab if less (SF 6= OF)
jle lab jump to lab if less or equal (ZF = 1 ∧ SF 6= OF)
jne lab jump to lab if not equal (ZF = 0)
jns lab jump to lab if not sign flag (SF = 0)
js lab jump to lab if if sign flag (SF = 1)
jmp lab jump to lab
jmp ∗reg jump to the address in reg
jmp ∗(reg) jump to the address in M[reg]
leaq mem, reg reg ← mem (load effective address)
leave %rsp← %rbp; %rbp← M[%rsp];

%rsp← %rsp+ 8.
movabsq lab, reg reg ← lab
movq reg1, reg2 reg2 ← reg1

movq reg ,mem M[mem]← reg
movq mem, reg reg ← M[mem]
movq imm32 , reg reg ← imm32
movq imm64 , reg reg ← imm64
orq reg1, reg2 reg2 ← reg2 OR reg1

orq reg ,mem M[mem]← M[mem] OR reg

5

orq imm32 , reg reg ← reg OR imm32
orq imm32 ,mem M[mem]← M[mem] OR imm32
orq mem, reg reg ← reg OR M[mem]
pushq reg %rsp← %rsp− 8; M[%rsp]← reg
pushq mem %rsp← %rsp− 8; M[%rsp]← M[mem]
pushq imm32 %rsp← %rsp− 8; M[%rsp]← imm32
ret return from procedure call
salq imm32 , reg reg ← reg << imm32
salq imm32 ,mem mem ← mem << imm32
sarq imm32 , reg reg ← reg >> imm32 (arithmetic shift)
sarq imm32 ,mem mem ← mem >> imm32
shrq imm32 , reg reg ← reg >> imm32 (logical shift)
shrq imm32 ,mem mem ← mem >> imm32
subq reg1, reg2 reg2 ← reg2 − reg1

subq reg ,mem M[mem]← M[mem]− reg
subq imm32 , reg reg ← reg − imm32
subq imm32 ,mem M[mem]← M[mem]− imm32
subq mem, reg reg ← reg −M[mem]
xorq reg1, reg2 reg2 ← reg2 XOR reg1

xorq reg ,mem M[mem]← M[mem] XOR reg
xorq imm32 , reg reg ← reg XOR imm32
xorq imm32 ,mem M[mem]← M[mem] XOR imm32
xorq mem, reg reg ← reg XOR M[mem]

Revision history

April 26, 2009 Fixed description of imulq instruction to match code.

April 25, 2009 Fixed stack-frame picture.

April 15, 2009 The pushq instruction also supports imm32 operands. Also added note about sign
extension of 32-bit immediates.

April 14, 2009 Fixed table in Section 4.2: changed addq to andq and changed popq to pushq.

6

