
CMSC 22620
Spring 2009

Implementation
of

Computer Languages

Handout 2
March 31, 2009

Project overview

1 Introduction

The project for the course is to implement code generation and optimizations for a small functional
programming language, called LangF.

Each part of the project builds upon the previous parts (but reference solutions for previous parts
will be available). The implementation will be undertaken using the Standard ML programming
language and submission of the project milestones will be managed using the course GForge server.
Programming projects will be individual efforts (no group submissions).

2 LangF

LangF is a strongly-typed, call-by-value, higher-order, polymorphic, functional programming lan-
guage. The syntax and semantics of LangF are similar to other functional programming languages
(e.g., Standard ML or OCaml), but with many simplifications and a more explicit type system.
LangF does not have type inference, exceptions, references, or a module system. LangF does have
first-class functions, datatypes, and explicit and first-class polymorphism.

For those of you familiar with the version of LangF used in CMSC 22610, we have added two
new features:

1. A mutable array type constructor (Array[’a]), with supporting operations.

2. Support for non-local control-flow with the try and escape expressions.

In addition, you will be generating code to run on the x86-64 architecture, so the Integer type
will span the range −262 to 262 − 1.

2.1 Types and Values

LangF supports two primitive types of values, integers and strings, and the primitive array type
constructor. In addition, LangF has datatype-constructed values (including predefined datatypes for
booleans and units), function values, and polymorphic-function values.

2.2 Programs

A LangF program is a sequence of declarations, which are either type, datatype, value, or function
definitions, followed by an expression. Executing a LangF program means evaluating each of the
declarations (making their definitions available to the subsequent declarations and expression) and
then evaluating the expression. Here is a very simple LangF program that computes 5! by defining
the fact function followed by the expression fact 5:

(* program declarations *)
fun fact (n: Integer) : Integer =

if n == 0 then 1 else n * fact (n - 1)
;
(* program expression *)
fact 5

Note that a ; is used to separate the declarations from the expression (but multiple declarations are
not separated by any delimiter) and a (* is used to start a comment and *) is used to terminate a
comment; comments may be nested.

2.3 Simple Expressions

LangF is an expression language, which means that all computation is done by expressions (there are
no statements). Furthermore, LangF is a call-by-value language, which means that (almost) all sub-
expressions are evaluated to values before the expression itself is evaluated. The body of the fact
function in the example program above has introduced many of the simple LangF expressions:

• variables: n

• integer constants: 0, 1

• integer comparisons: n == 0

• integer operations: n - 1

• array indexing: a!i

• array updating: a!i := x

• function applications: fact (n - 1)

• conditionals: if n == 0 then 1 else n * fact (n - 1)

Thus, many of the simple LangF expressions deal with values of the primitive integer and string
types and the built-in boolean datatype. For reference, the following is the full collection of integer-
centric expressions:

2

expression form meaning
integer integer constant

Exp == Exp integer equality
Exp <> Exp integer inequality
Exp < Exp integer less-than

Exp <= Exp integer less-than-or-equal
Exp > Exp integer greater-than

Exp >= Exp integer greater-than-or-equal
Exp + Exp integer addition
Exp - Exp integer subtraction
Exp * Exp integer multiplication
Exp / Exp integer division
Exp % Exp integer modulus
Exp ! Exp array subscript
˜ Exp unary integer negation

the following is the full collection of string-centric expressions:

expression form meaning
string string constant

Exp ˆ Exp string concatenation

and the following is the full collection of boolean-centric expressions:

expression form meaning
if Exp then Exp else Exp conditional

Exp orelse Exp short-circuiting disjunction
Exp andalso Exp short-circuiting conjunction

2.4 Value Declarations

A LangF value declaration simply binds a name to an expression; the name may be used in sub-
sequent declarations and expressions. When a value declaration is evaluated, the expression is
evaluated to a value and the value is bound to the name (making the value available to subsequent
declarations and expressions through the name). The following simple value declaration binds the
name two to the integer expression 1 + 1:

val two = 1 + 1

Note that a value declaration is introduced with the val keyword and that (value variable) names
are written with a leading lower-case letter. A LangF value declaration may optionally assert the
type of the bound expression:

val four : Integer = two + two

Such type assertions can be useful to understand why a program has (or does not have) type errors.

3

2.5 Function Declarations and Anonymous Function Expressions

A LangF function declaration defines a function and introduces a name for the function; the function
name may be used in subsequent declarations and expressions. For example, we might wish to
define a function to add two integers:

fun add (a: Integer) (b: Integer) : Integer = a + b

Note that a function declaration is introduced with the fun keyword, followed by the function
name, one or more function parameters (each a variable with its type), the function result type, and
an expression for the function body. Functions in LangF are first-class: they may be nested, taken as
arguments, and returned as results. A function with more than one parameter is a curried function;
thus the following program evaluates to 4:

fun add (a: Integer) (b: Integer) : Integer = a + b
val _ : Integer -> Integer -> Integer = add
val inc : Integer -> Integer = add 1
;
inc (add 1 2)

Note that the function type is introduced with the syntax Type -> Type; the add function has the
type Integer -> Integer -> Integer; applying it to the argument 1 returns a function
having the type Integer -> Integer (which is bound to the name inc).

A LangF function declaration may be recursive and a collection of function declarations may
be mutually recursive. Thus, the function body may use the function names introduced by the
function declaration(s). For example, in the factorial function, the function name fact is used in
the function body:

fun fact (n: Integer) : Integer =
if n == 0 then 1 else n * fact (n - 1)

As an example of mutually recursive functions, consider the isEven and isOdd functions:

fun isEven (n: Integer) : Bool =
if n == 0 then True else isOdd (n - 1)

and isOdd (n: Integer) : Bool =
if n == 0 then False else isEven (n - 1)

Note that functions declarations in a collection of mutually recursive function declarations are sep-
arated with the and keyword. Also note that within a collection of mutually recursive function
declarations, all of the introduced function names must be distinct.

In addition to function declarations, LangF has anonymous function expressions. For example,
we might wish to return a function to multiply two integers (without introducing a name for the
function):

4

fn (x: Integer) (y: Integer) => x * y

Note that an anonymous function expression is introduced with the fn keyword, followed by one
or more function parameters (each a variable with its type) and an expression for the function body.
A LangF anonymous function expression cannot be recursive (as there is no name for the function).

2.6 Polymorphic Functions

A defining characteristic of LangF (taken from System F, the polymorphic λ-calculus) is polymor-
phism or type abstraction. The prototypical example of a polymorphic function is the identity
function. The identity function simply returns its argument (without performing any computation
on it). Thus, the behavior of the function is the same for all possible types of its argument (and
result). The function declaration for the identity function introduces one function parameter (a type
variable) to be used as the type of the second function parameter and the result type:

fun id [’a] (x: ’a) : ’a = x

Note that type variables are written with a leading ’ and lower-case letter.

Like (ordinary) functions, polymorphic functions in LangF are first-class: they may be nested,
taken as arguments, and returned as results. To use a polymorphic function, it must be applied
to a type, rather than to an expression. The result of applying a polymorphic function to a type
is a value having the type produced by instantiating the type variable with the applied type. For
example, the result of applying the identity function to the integer type is a function having the type
Integer -> Integer:

fun id [’a] (x: ’a) : ’a = x
val _ : [’a] -> ’a -> ’a = id
val _ : Integer -> Integer = id [Integer]
val zero : Integer = id [Integer] 0

Note that the polymorphic function type is introduced with the syntax [tyvarid] -> Type. Also
note that the type variable in a function parameter and in a polymorphic function type is a binding
occurrence of the type variable; two polymorphic function types are equal if each of the bound type
variables in one can be renamed to match the bound type variables in the other:

fun id [’a] (x: ’a) : ’a = x
val _ : [’b] -> ’b -> ’b = id
val _ : [’c] -> ’c -> ’c = id

Anonymous function expressions may also be used to return polymorphic functions:

val twice : [’a] -> (’a -> ’a) -> ’a -> ’a =
fn [’a] (f: ’a -> ’a) (x: ’a) => f (f x)

val two : Integer = twice [Integer] (fn (x: Integer) => x + 1) 0
val zzzz : String = twice [String] (fn (s: String) => s ˆ s) "z"

5

In function declarations and anonymous function expressions, type variable and (value) variable
parameters may be mixed; however, a type variable parameter must occur before any use of the type
variable in the types of (value) variable parameters:

val revApp = fn [’a] (x: ’a) [’b] (f: ’a -> ’b) => f x
val _ : [’b] -> (Integer -> ’b) -> ’b = revApp [Integer] 1
val two = revApp [Integer] 1 [Integer] (fn (x: Integer) => x * 2)

The previous examples have also demonstrated that a function with more than one parameter (either
type variable parameters or (value) variable parameters) is a curried function and can be partially
applied to types or expression arguments.

2.7 Non-local control flow

While LangF does not have ML-style exceptions, it does provide a non-local control-flow mecha-
nism for error handling. The mechanism is similar to, but more restricted than, C’s setjmp/longjmp
operations. For example, the following code uses this mechanism to short-circuit evaluation when
a zero-valued leaf is encountered:

datatype Tree = ND { Tree, Tree } | LF { Integer };
fun treeMul (t : Tree) : Integer = let

fun mul (t : Tree) : Integer = case t
of LF{i} => if i == 0 then escape[Integer] else i
| ND{t1, t2} => treeMul t1 * treeMul t2

end
in

try mul t catch 0 end
end

Note that the escape operator takes a type argument; this type is the type of the expression.

2.8 Type Declarations

A LangF type declaration introduces another name for a type; the new type name may be used in
subsequent declarations and expressions. For example, we might wish to abbreviate the type of an
integer comparison function (a function from two integers to a boolean):

type IntCmp = Integer -> Integer -> Bool
val intEq : IntCmp = fn (x: Integer) (y: Integer) = x == y

Note that a type declaration is introduced with the type keyword and that type names are written
with a leading upper-case letter.

A LangF type declaration may also include type parameters, which must be instantiated at each
use of the new type name. For example, we might wish to abbreviate the type of a general compar-
ison function (a function from two values of the same (but any) type to a boolean) and then define
the type of an integer comparison function in terms of the general comparison function:

6

type Cmp [’a] = ’a -> ’a -> Bool
type IntCmp = Cmp [Integer]

Note that type parameters and type arguments are written in [. . .] and, as in function parameters,
that type variables are written with a leading ’ and lower-case letter. Multiple type parameters and
type arguments are separated by ,s and [] can be used to be explicit about the absence of type
parameters and type arguments:

type BinOp [’a, ’b] = ’a -> ’a -> ’b
type Cmp [’a] = BinOp [’a, Bool]
type IntCmp [] = Cmp [Integer]

Unlike polymorphic functions, a type name cannot be partially applied; at every use of the type
name, all type parameters must be instantiated.

2.9 Datatype Declarations and Constructor and Case Expressions

A LangF datatype declaration introduces a new type along with constructors; the constructors pro-
vide the means to create values of the new type and to take apart values of the new type. Each
constructor is declared with the types of its argument(s). A very simple datatype declaration is the
one for booleans that introduces two constructors (True and False), each with no arguments:

datatype Bool = True | False

Note that a datatype declaration is introduced with the datatype keyword and that constructor
names are written with a leading upper-case letter. A slightly more complicated datatype declaration
is one that represents publications, which can be either a book (with an author and a title) or an
article (with an author, a title, and a journal name):

datatype Publication = Book {String, String}
| Article {String, String, String}

Note that the types of a constructor’s argument(s) are written in { . . . } separated by ,s and { } can
be used to be explicit about the absence of arguments.

To create a value having a datatype type, a constructor name is applied to argument(s):

val pub1 : Publication =
Book {"Lawrence Paulson", "ML for the Working Programmer"}

val pub2 : Publication =
Article {"Andrew Appel", "A Critique of Standard ML",

"Journal of Functional Programming"}

As in constructor declarations, the arguments of a constructor are written in { . . . } separated by ,s
and { } can be used to be explicit about the absence of arguments. Unlike functions, a constructor
name cannot be partially applied; at every use of the constructor name, all arguments must be given.

7

To take apart a value having a datatype type, a collection of match rules (each with a pattern
involving the constructor names and an expression) is checked successively against an argument;
when a pattern matches the argument, its expression is returned as the result:

fun not (b: Bool) : Bool =
case b of True => False | False => True end

fun author (p: Publication) : String =
case p of

Book {author, title} => author
| Article {author, title, journal} => author

end
val lawrence : String = author pub1
val andrew : String = author pub2

Note that a case expression is introduced with the case keyword, followed by the case-expression
argument, the of keyword, one or more match rules, and terminated by the end keyword. Each
match rule is introduced with the syntax Pat => Exp and separated by |s. In a match rule, the pattern
is either a constructor name applied to simple pattern(s) or a simple pattern; a simple pattern is either
a variable name or an . When a pattern matches a value, pattern variable names are bound to the
corresponding value components and may be used in the match rule expression. Thus, in the evalua-
tion of author pub1 in the example above, the pattern Book {author, title}matches the
value Book {"Lawrence Paulson", "ML for the Working Programmer"}, mak-
ing author bound to "Lawrence Paulson". The following example uses _ patterns:

fun isBook (p: Publication) : Bool =
case p
of Book {_, _} => True
| _ => False

end
fun isJournal (p: Publication) : Bool =
case p
of Journal {_, _, _} => True
| _ => False

end

A LangF datatype declaration may also include type parameters (yielding a polymorphic datatype),
which must be instantiated at each use of the new type name. The types of a constructor’s argu-
ments(s) may use the type parameters. For example, the pair datatype takes two type parameters
and introduces a constructor with two arguments of the types of the parameters:

datatype Pair [’a, ’b] = Pair {’a, ’b}

To create a value having a polymorphic-datatype type, a constructor name is applied to type argu-
ment(s) and argument(s):

val one_hello = Pair [Integer, String] {1, "hello"}

8

The type arguments of a constructor are written in [. . .] separated by ,s and [] can be used
to be explicit about the absence of type arguments. Unlike polymorphic functions, a polymorphic-
constructor name cannot be partially applied; at every use of the polymorphic-constructor name, all
type arguments and arguments must be given.

Similarly, to match a value having a polymorphic-datatype type, a constructor name is applied
to type argument(s) and simple pattern(s) in a match rule:

fun fst [’a] [’b] (p: Pair [’a, ’b]) : ’a =
case p of Pair [’a, ’b] {x, y} => x end

fun snd [’a] [’b] (p: Pair [’a, ’b]) : ’b =
case p of Pair [’a, ’b] {x, y} => y end

val one : Integer = fst [Integer] [String] one_hello
val hello : String = snd [Integer] [String] one_hello

A LangF datatype declaration may be recursive and a collection of datatype declarations may
be mutually recursive. Thus, the types of a constructor’s argument(s) may use the type names
introduced by the datatype declaration(s). For example, in the list datatype, the type of the second
argument of the Cons constructor is itself the list datatype:

datatype List [’a] = Nil | Cons {’a, List [’a]}

As an example of mutually recursive datatypes, consider variadic trees that are either empty or a
node with an element and a forest and forests that are either empty or a node with a tree and a forest:

datatype Tree [’a] = EmptyT | Forest {’a, Forest [’a]}
and Forest [’a] = EmptyF | Tree {Tree [’a], Forest [’a]}

Note that datatype declarations in a collection of mutually recursive datatype declarations are sep-
arated with the and keyword. Also note that within a collection of mutually recursive datatype
declarations, all of the introduced type names must be distinct and all of the introduced constructor
names must be distinct; however, type names and constructor names need not be distinct (as in the
pair datatype declaration and in the tree/forest datatype declarations).

The following mutually recursive functions compute the height of variadic trees and forests:

9

fun max (x: Integer) (y: Integer) : Integer =
if x > y then x else y

fun heightTree [’a] (t: Tree ’a) : Integer =
case t of

EmptyT [’a] => 0
| Forest [’a] {_, f} => 1 + (heightForest [’a] f)
end

and heightForest [’a] (f: Forest ’a) : Integer =
case f of

EmtpyF [’a] => 0
| Tree [’a] {t, f} =>

max (heightTree [’a] t) (heightForest [’a] f)

2.10 Miscellaneous Expressions

LangF include a few more expressions that have not been introduced in the previous examples.

A let expression introduces declarations with limited scope; that is, the names (type names,
constructor names, function names) introduced by the declarations can only be used in the body of
the let expression:

val sixteen =
let

fun square (n: Integer): Integer = n * n
in

square (square 2)
end

(* cannot use ’square’ in later declarations or expressions. *)

Note that a let expression is introduced with the let keyword, followed by one or more declara-
tions, the in keyword, followed by the let-expression body, and terminated by the end keyword.

A type-constraint expression asserts the type of an expression:

val three = ((id [Integer] : Integer -> Integer) (3 : Integer)
: Integer)

Note that a type-constraint expression is introduced with the syntax Exp : Type. Such type asser-
tions can be useful to understand why a program has (or does not have) type errors.

Finally, a sequence expression evaluates multiple expressions, but only returns the result of the
final expression:

val zero =
(print "Hello " ; print "world!\n" ; 0)

val one = inc zero

10

Note that a sequence expression is written in (. . .) separated by ;. Evaluating these declarations
first prints the string "Hello ", then prints string "world!\n", then binds zero to the value
0, and finally binds one to the value 1. As a convenience, a sequence expression appearing in the
body of a let expression can be written without the delimiting parentheses:

val nine =
let

fun square (n: Integer) : Integer = n * n
in

print "Hello " ; print "world!\n" ; square 3
end

Evaluating this declaration first prints the string "Hello ", then prints string "world!\n", then
binds nine to the value 9.

3 Predefined Types, Constructors, and Functions

LangF provides the following predefined types and constructors:

type Integer = ...
type String = ...
type Array [’a] = ...
datatype Unit = Unit
datatype Bool = True | False
datatype [’a] Option = Some {’a} | None

The Integer and String types correspond to the primitive types of integers and strings; we
have seen many examples that use these types. The Array type constructor generates the type of
mutable arrays.

The Bool datatype corresponds to the type returned by the integer-comparison expression
forms and the type expected by the boolean-centric expression forms. The Unit datatype cor-
responds to a type with exactly one constructor Unit; it is useful as the return type of functions
that should be evaluated for a side-effect, without returning a value.

LangF also provides the following predefined functions:

val argc : Unit -> Integer
val arg : Integer -> String
val print : String -> Unit
val fail : [’a] -> String -> ’a
val size : String -> Integer
val sub : String -> Integer -> Integer
val toString : Integer -> String
val fromString : String -> Option[Integer]
val array : [’a] -> Integer -> ’a -> Array[’a]
val length : [’a] -> Array[’a] -> Integer

11

4 LangF syntax

For reference, the following is the collected syntax of LangF. We assume the following kinds of
terminal symbols: type variable identifiers (tyvarid, with a leading ’ and lower-case letter), type
constructor identifiers (tyconid, with a leading upper-case letter) type; data constructor identifiers
(daconid, with a leading upper-case letter); variable identifiers (varid, with a leading lower-case
letter); integer literals (integer); and string literals (string).

Prog
::= Exp
| (Decl)∗ ; Exp

Decl
::= type tyconid TypeParams = Type
| datatype DataDecl (and DataDecl)∗

| val SimplePat (: Type)opt = Exp
| fun FunDecl (and FunDecl)∗

TypeParams
::=
| []
| [tyvarid (, tyvarid)∗]

Type
::= Type -> Type
| [tyvarid] -> Type
| tyconid TypeArgs
| tyvarid
| (Type)

TypeArgs
::=
| []
| [Type (, Type)∗]

DataDecl
::= tyconid TypeParams = DaConDecl (| DaConDecl)∗

DaConDecl
::= daconid DaConArgTys

DaConArgTys
::=
| { }
| { Type (, Type)∗ }

FunDecl
::= varid Param+ : Type = Exp

12

Param
::= (varid : Type)
| [tyvarid]

Exp
::= let Decl+ in Exp (; Exp)∗ end
| fn Param+ => Exp
| if Exp then Exp else Exp
| case Exp of MatchRule (| MatchRule)∗ end
| try Exp catch Exp end
| escape [Type]
| Exp orelse Exp
| Exp andalso Exp
| Exp : Type
| Exp ! Exp := Exp
| Exp Operator Exp
| ˜ Exp
| daconid TypeArgs DaConArgs
| Exp ApplyArg
| varid
| (Exp (; Exp)∗)
| integer
| string

MatchRule
::= Pat => Exp

Pat
::= daconid TypeArgs DaConPats
| SimplePat

DaConPats
::=
| { }
| { SimplePat (, SimplePat)∗ }

SimplePat
::= varid
| _

DaConArgs
::=
| { }
| { Exp (, Exp)∗ }

ApplyArg
::= Exp
| [Type]

13

Operator
::= == | <> | < | <= | > | >= | + | - | * | / | % | ˆ | !

14

