1. [75 points] We can augment the MinML language by adding pairs (binary Cartesian products). Concretely, this amounts to adding three new expression forms to the abstract syntax, as shown here:

\[
e ::= \ldots \mid (e, e) \mid \text{fst}(e) \mid \text{snd}(e)
\]

The basic pair expression has the form \((e_1, e_2)\), where \(e_1\) and \(e_2\) are arbitrary expressions. Its value is a pair made up of the values of \(e_1\) and \(e_2\). The expression \(\text{fst}(e)\) projects out the first component of the pair denoted by \(e\), while \(\text{snd}(e)\) yields the second component. Thus if \(v = (2, \text{true})\), then \(\text{fst}(v) = 2\) and \(\text{snd}(v) = \text{true}\). Note that the first and second components of a pair can have different types, and also that those types can be arbitrary; a pair can have primitive values, functions, or pairs as components.

The definition of a value is also extended to include pair values:

\[
v ::= \ldots \mid (v, v)
\]

i.e., a pair of values is a value.

The type expressions are correspondingly extended with a product form:

\[
\tau ::= \ldots \mid \tau \star \tau
\]

As with the function arror operator, the product operator for types is written using infix notation.

(a) [10 points]. Add new typing rules for the three new expression forms (note that intuitively, a value like \((2, \text{true})\) has the product type \(\text{int} \star \text{bool}\)).

Solution:

\[
\frac{\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash (e_1, e_2) : \tau_1 \star \tau_2} \quad \text{(P1)}
\]

\[
\frac{\Gamma \vdash e : \tau_1 \star \tau_2}{\Gamma \vdash \text{fst}(e) : \tau_1} \quad \text{(P2)} \quad \frac{\Gamma \vdash e : \tau_1 \star \tau_2}{\Gamma \vdash \text{snd}(e) : \tau_2} \quad \text{(P3)}
\]

(b) [15 points]. Add new small-step evaluation rules for the transition relation \(\rightarrow\) to cover the new expression forms. Evaluation of a pair expression should be left-to-right, as it is for the arguments of \text{plus} and \text{apply}. [Hint: there will be only 6 new rules, two of which will be instructions.]
Solution: Note that in rules (PE1) and (PE2) the pair must be fully evaluated before the projections can be evaluated. One can imaging “call-by-name” versions of these rules that did not evaluate the discarded pair element, but this would conflict with the search rules, which specify left-to-right evaluation of pair expressions. Note also that there is no instruction rule for pair expressions since \((v_1, v_2)\) is a value, and hence a final state in the transition system.

\[
\begin{align*}
\text{fst}((v_1, v_2)) & \mapsto v_1 \quad \text{(PE1)} \\
\text{snd}((v_1, v_2)) & \mapsto v_2 \quad \text{(PE2)} \\
\end{align*}
\]

\[
\begin{align*}
e & \mapsto e' \\
\text{fst}(e) & \mapsto \text{fst}(e') \quad \text{(PE3)} \\
\end{align*}
\]

\[
\begin{align*}
e & \mapsto e' \\
\text{snd}(e) & \mapsto \text{snd}(e') \quad \text{(PE4)} \\
\end{align*}
\]

\[
\begin{align*}
e_1 & \mapsto e'_1 \\
(e_1, e_2) & \mapsto (e'_1, e_2) \quad \text{(PE5)} \\
\end{align*}
\]

\[
\begin{align*}
e_1 & \mapsto e'_1 \\
(e_1, e_2) & \mapsto (e'_1, e_2) \quad \text{(PE6)} \\
\end{align*}
\]

(c) [10 points]. State the new clauses in the Inversion Theorem (Theorem 9.1, p. 53) and the Canonical Forms Lemma (Lemma 10.2, p. 61) needed to deal with pairs.

Solution:
Inversion Theorem:
(1) \(\Gamma \vdash (e_1, e_2) : \tau_1 * \tau_2 \implies \Gamma \vdash e_1 : \tau_1 \) and \(\Gamma \vdash e_2 : \tau_2\)
(2) \(\Gamma \vdash \text{fst}(e) : \tau \implies \exists \tau_2. \Gamma \vdash e : \tau * \tau_2\)
(3) \(\Gamma \vdash \text{snd}(e) : \tau \implies \exists \tau_1. \Gamma \vdash e : \tau_1 * \tau\)

(d) [20 points]. Give the new case of the proof of the Progress Theorem relating to pair expressions of the form \((e_1, e_2)\).

Solution: The assumption of the theorem is that \(\vdash e : \tau\), where \(e = (e_1, e_2)\), and the proof is by induction on the derivation of the typing judgment. By the Inversion Theorem, we have \(\tau = \tau_1 * \tau_2\) and

\begin{align*}
(1) & \quad \vdash e_1 : \tau_1 \\
(2) & \quad \vdash e_2 : \tau_2 \\
\end{align*}

The induction hypotheses are

(IH1) \(e_1\) a value or \(e_1 \mapsto e'_1\)

(IH2) \(e_2\) a value or \(e_2 \mapsto e'_2\)

If \(e_1\) and \(e_2\) are both values, then \(e = (e_1, e_2)\) is also a value, and we are done. If \(e_1 \mapsto e'_1\) then \(\text{stepe}(e'_1, e_2)\) by (PE5). Finally, if \(e_1\) is a value and \(e_2 \mapsto e'_2\) then \(\text{stepe}(e_1, e'_2)\) by (PE6).
(e) [20 points]. Give the new cases of the Preservation Theorem relating to expressions of the form \(\text{fst}(e) \).

Solution: The proof assumptions are that \(\vdash e : \tau \) and \(e \rightarrow e' \), and the proof is by induction on the derivation of the transition judgement.

Case \(e = \text{fst}((v_1, v_2)) \) and \(e \rightarrow v_1 \), with \(e' = v_1 \) (rule (Pe1)). Then \(e = (e_1, e_2) \) and by inversion we have \(\vdash v_1 : \tau \), hence \(\vdash e' : \tau \), as required.

Case \(e = \text{fst}(e_1) \) and \(e' = \text{fst}(e_1') \) where \(e_1 \rightarrow e_1' \) (rule (PE3)). By inversion, there exists a type \(\tau_2 \) such that \(\vdash e_1 : \tau \times \tau_2 \). The induction hypothesis is \(\vdash e_1' : \tau \times \tau_2 \). Thus by the rule (P2) from part (a) we have \(\vdash \text{fst}(e_1') : \tau \), i.e. \(\vdash e' : \tau \).