1a \[M_0 = (q.g\left(f^2\right))((2y, z, 2x, (a + u + x)) x (2x, f, y)) \]
\[M_1 = 2y. \bar{x}(2z, 2x, x(2z, z, x)) \]

1b \(q / F^3 M_0 = \)
\[(q^b, q^b(q^2))((2y, z, 2x, (a + u + x)) x (2x, f, y)) \]
\(\alpha \)-conversion before subst.

\(F / g^3 M_0 = M_0 \) - no change, \(g \notin FV(M_0) \)
\(FV(M_0) = \{ f, x, y \} \)

2. \(\forall \Gamma, \forall e, \Gamma \vdash e \text{ ok} \iff \text{FV}(e) \subseteq \Gamma \)

(\(\Rightarrow \)) \(\forall \Gamma, \forall e, \Gamma \vdash e \text{ ok} \Rightarrow \text{FV}(e) \subseteq \Gamma \).

Assume, for some \(\Gamma, e \), that \(\Gamma \vdash e \text{ ok} \). We prove \(\text{FV}(e) \subseteq \Gamma \) by ind. on derivation of \(\Gamma \vdash e \text{ ok} \).

Base Case 1: \(\Gamma \vdash e \text{ ok} \) by rule S1 (the Var rule).
Then \(e = x \) for some variable \(x \), and \(x \in \Gamma \).
Then \(\text{FV}(e) = \{ x \} \) (defn of FV), and \(\{ x \} \subseteq \Gamma \).

Base Case 2: \(\Gamma \vdash e \text{ ok} \) by rule S2 (the Num rule).
Then \(e = n \) for some \(n \in \mathbb{N} \). Thus \(\text{FV}(e) = \text{FV}(n) = \emptyset \subseteq \Gamma \).

Ind Case 1: \(\Gamma \vdash e \text{ ok} \) by rule S3 (Plus rule).
Then \(e = + (e_1, e_2) \). By inversion of the rule, we have (1) \(\Gamma \vdash e_1 \text{ ok} \) and (2) \(\Gamma \vdash e_2 \text{ ok} \).
The Ind. Hypothesis is:

(IH1) $\Gamma \vdash e_1 \text{ ok} \implies \text{FV}(e_1) \subseteq \Gamma$ \hspace{1cm} (same Γ)

& (IH2) $\Gamma \vdash e_2 \text{ ok} \implies \text{FV}(e_2) \subseteq \Gamma$

By (1) and (IH1), we have (3) $\text{FV}(e_1) \subseteq \Gamma$ and

(4) $\text{FV}(e_2) \subseteq \Gamma$. Thus

$$\text{FV}(e) = \text{FV}(e_1) \cup \text{FV}(e_2) \subseteq \Gamma \quad \square$$

The case for the times rule is similar. (Ind. Case 2)

Ind Case 3: $\Gamma \vdash e \text{ ok}$ by rule S5 (Let rule).

Then $e = \text{let}(e_1, x, e_2)$. By inversion of the Let rule we have

(1) $\Gamma \vdash e_1 \text{ ok}$

(2) $\Gamma \cup \{x\} \vdash e_2 \text{ ok}$

The ind. hyp. is

(IH1) $\Gamma \vdash e_1 \text{ ok} \implies \text{FV}(e_1) \subseteq \Gamma$

& (IH2) $\Gamma \cup \{x\} \vdash e_2 \text{ ok} \implies \text{FV}(e_2) \subseteq \Gamma \cup \{x\}$

Then by (1) and (IH1), and (2) and (IH2) resp.

(3) $\text{FV}(e_1) \subseteq \Gamma$

(4) $\text{FV}(e_2) \subseteq \Gamma \cup \{x\}$ \hspace{1cm} ($\implies \text{FV}(e_2) \setminus \{x\} \subseteq \Gamma$)

which implies

(5) $\text{FV}(e) = \text{FV}(\text{let}(e_1, x, e_2))$

$$= \text{FV}(e_1) \cup (\text{FV}(e_2) \setminus \{x\})$$

$$\subseteq \Gamma$$ \hspace{1cm} \blacksquare$$
2. \(\forall e.\forall \Gamma . \text{FV}(e) \subseteq \Gamma \Rightarrow \Gamma \vdash e \text{ ok}\)

Assume \(\text{FV}(e) \subseteq \Gamma\). Prove \(\Gamma \vdash e \text{ ok}\) by ind. on structure of \(e\).

Base Case 1: \(e = x\), a variable.

Then \(\text{FV}(e) = \{x\}\), so \(\{x\} \subseteq \Gamma\) means \(x \in \Gamma\). Thus by rule S1, \(\Gamma \vdash e \text{ ok}\).

Base Case 2: \(e = n\), a number. Then \(\Gamma \vdash e \text{ ok}\) by rule Num.

Ind. Case 1: \(e = \text{plus}(e_1, e_2)\). Then \(\text{FV}(e) = \text{FV}(e_1) \cup \text{FV}(e_2)\).

So \(\text{FV}(e) \subseteq \Gamma \Rightarrow\):

1. \(\text{FV}(e_1) \subseteq \Gamma\)
2. \(\text{FV}(e_2) \subseteq \Gamma\)

The Ind. Hyp. is:

(IH1) \(\forall \Gamma'. \text{FV}(e_1) \subseteq \Gamma' \Rightarrow \Gamma' \vdash e_1 \text{ ok}\)

& (IH2) \(\forall \Gamma'. \text{FV}(e_2) \subseteq \Gamma' \Rightarrow \Gamma' \vdash e_2 \text{ ok}\)

Then

3. \(\Gamma \vdash e_1 \text{ ok}\) by (1) and (IH1)
4. \(\Gamma \vdash e_2 \text{ ok}\) by (2) and (IH2)

Then by (3) and (4) and rule Plus (S3), we have \(\Gamma \vdash e \text{ ok}\).

The Times case is similar. (Ind Case 2)

Ind Case 3: \(e = \text{let}(e_1, x . e_2)\).

Then \(\text{FV}(e) = \text{FV}(e_1) \cup (\text{FV}(e_2) \setminus \{x\})\), \(\text{FV}(e) \subseteq \Gamma\)

implies

1. \(\text{FV}(e_1) \subseteq \Gamma\)
2. \(\text{FV}(e_2) \setminus \{x\} \subseteq \Gamma\) \(\Rightarrow \text{FV}(e_2) \subseteq \Gamma \cup \{x\}\)
The Ind Hyp is

(IH1) \(\forall \Gamma'. \ FV(e_1) \in \Gamma' \Rightarrow \Gamma' \vdash e_1 \) ok

& (IH2) \(\forall \Gamma'. \ FV(e_2) \in \Gamma' \Rightarrow \Gamma' \vdash e_2 \) ok

Then

(3) \(\Gamma \vdash e_1 \) ok by (1) and (IH1)

(4) \(\Gamma \upharpoonright \{x\} \vdash e_2 \) ok by (2) and (IH2)

Then (3) and (4) and the Let rule give \(\Gamma \vdash e \) ok. \(\square \)
3. \(e \rightarrow e_1 \text{ and } e \rightarrow e_2 \Rightarrow e_1 = e_2 \).

Proof by induction on the derivation of \(e \rightarrow e_1 \) (i.e. by rule induction on the rules for \(\rightarrow \)).

Base Case 1. \(e \rightarrow e_1 \) by \(E_{10} \), the plus instruction.

Then \(e = \text{plus}(m,n) \) and \(e_1 = p \) where \(p = m+n \).

Then the only rule by which \(e \rightarrow e_2 \) is \(E_{10} \), so \(e_2 \) must be \(p \) as well. Hence \(e_1 = p = e_2 \). \(\square \)

Similarly for \(E_{11} \).

Base Case 2. \(e \rightarrow e_1 \) by \(E_{12} \), the let instruction.

Then \(e = \text{let}(n,x.e') \) and \(e_1 = \text{let}(n/x^{e'}) \).

The only rule that matches \(e \) is \(E_{12} \), so \(e \rightarrow e_2 \) by the same rule, so \(e_2 = \text{let}(n/x^{e'}) = e_1 \). \(\square \)

Ind. Case 1. \(e \rightarrow e_1 \) by \(E_{14} \), the left plus search rule.

Then \(e = \text{plus}(e_3, e_4) \) and \(e_1 = \text{plus}(e_3', e_4') \) where \(e_3 \rightarrow e_3' \). The induction hypothesis is:

\[\text{(IH)} \forall f_1, f_2. \ e_3 \rightarrow f_1 \text{ and } e_3 \rightarrow f_2 \Rightarrow f_1 = f_2 \]

The only rule by which \(e \rightarrow e_2 \) can be deduced is \(E_{14} \), so \(\exists e_5. \ e_2 = \text{plus}(e_5, e_4) \), and \(e_3 \rightarrow e_5 \).

But by the (IH), taking \(f_1 = e_3' \) and \(f_2 = e_5 \), we have \(e_3' = e_5 \). But then \(e_2 = \text{plus}(e_5, e_4) = \text{plus}(e_3', e_4) = e_1 \). \(\square \)

All the other search rule cases follow the same pattern, with minor, and obvious changes.