1. Consider the following picture, where \mathbf{n} , \mathbf{l} , and \mathbf{r} are all unit vectors. Give an equation for \mathbf{r} in terms of \mathbf{n} and \mathbf{l} (*i.e.*, that does not refer to θ).

2. Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \Re^3$ and let \mathbf{M} be the matrix formed by taking \mathbf{u}, \mathbf{v} , and \mathbf{w} as its columns. Then show that

$$\det \mathbf{M} = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$$

3. Affine transformations can be represented by 4×4 homogeneous matrices with the following shape:

$$\left[\begin{array}{cc} \mathbf{M} & \mathbf{t} \\ \mathbf{0} & 1 \end{array}\right]$$

where \mathbf{M} is a 3×3 matrix and \mathbf{t} is a vector. We can use $\langle \mathbf{M} \mid \mathbf{t} \rangle$ as a more compact notation for this class of matrices. The product of two homogeneous matrices is

$$\langle \mathbf{M}_1 \mid \mathbf{t}_1 \rangle \langle \mathbf{M}_2 \mid \mathbf{t}_2 \rangle = \langle \mathbf{M}_1 \mathbf{M}_2 \mid \mathbf{M}_1 \mathbf{t}_2 + \mathbf{t}_1 \rangle$$

and applying the transformation to a homogeneous point is

$$\langle \mathbf{M} \mid \mathbf{t} \rangle \left[\begin{array}{c} \mathbf{v} \\ 1 \end{array} \right] = \mathbf{M}_1 \mathbf{v} + \mathbf{t}$$

If we restrict ourselves to isotropic (uniform) scaling, rotation, and translation, then these matrices are called SRT transforms and have the form $\langle s\mathbf{R} \mid \mathbf{t} \rangle$, where s is a scalar and \mathbf{R} is a rotation matrix. Given this notation, solve the following equations:

- (a) $\langle s_1 \mathbf{R}_1 \mid \mathbf{t}_1 \rangle \langle s_2 \mathbf{R}_2 \mid \mathbf{t}_2 \rangle$
- (b) $\langle s\mathbf{R} \mid \mathbf{t} \rangle \begin{bmatrix} \mathbf{v} \\ 1 \end{bmatrix}$
- (c) $\langle s\mathbf{R} \mid \mathbf{t} \rangle^{-1}$