
Object detection and recognition



Example problems

Detecting non-rigid objects

PASCAL challenge

Segmenting cells

Medical image
analysis

Detecting rigid objects



Template matching
• “Appearance based method”.

• Object of interest defined by a template.

• Compare template to image data under each possible shift.

- Scale template or image to find objects of different sizes

template

test image match quality



Issues

• How to compare template to image?

- Sum of squared differences, dot product, etc.

• What should we use as the template?

- Cropped picture of the object.

- Average of multiple pictures.

• How do we handle variation in appearance?

- Variations due to pose, lighting, non-rigid objects, etc.

- Don’t compare image intensities directly.

- Works well for certain classes of objects (face detection).



Image intensities



Histogram of Gradient (HOG) features

• Discretize gradient orientation at each pixel into 9 possible values.

• Image is partitioned into 8x8 pixel blocks.

• In each block we compute a histogram of gradient orientations.

- 9 dimensional feature vector.

- Invariant to changes in lighting, small deformations, etc.



Template matching with HOG features
• Templates define weights for features in rectangular window.

- NxMx9 weights for a window of size NxM.

• Take dot product of template and subwindow of HOG pyramid.

Image pyramid HOG feature pyramid

HOG pyramid

X

Score at this location is W ⋅ X

W



Face detection

template

example result



Learning the template

• Suppose we have positive and negative examples:

- (x1, y1),..., (xn, yn) 

- xi is a subwindow of a HOG pyramid.

- yi = 1 if subwindow contains a face

- yi = -1 otherwise

• Look for template W such that every positive example scores 
higher than every negative example.

- (W ⋅ xi) > b  if yi = 1

- (W ⋅ xi) < b  if yi = -1



Linear classifiers
• Linear classifier:

- Defined by a weight vector W and bias b.

- (W ⋅ xi) > b  if yi = 1

- (W ⋅ xi) < b  if yi = -1

• W and b define a hyperplane separating the positive and negative 
examples. W is the orientation, b is the distance from the origin.



Learning linear classifiers

• Given (x1, y1),..., (xn, yn) 

• Find hyperplane separating positive and negative examples

• Classical problem in pattern recognition/machine learning

- Linear programming

- Perceptron algorithm

- Support vector machines



Training a face model
• Positive examples:

• Negative examples:  random patches from images without faces

• Model learned with SVM:

. . .



Face detection

template



Deformable Models

• Template matching works well for faces but...

• How do we handle other types of objects

- People, cars, etc.

- Non-rigid objects, object categories, etc.

• Deformable models approach:

- Consider each object as a deformed version of a template.



Pictorial Structures

• Introduced by Fischler and Elschlager in 1973.

• Part-based models:

- Each part represents local visual properties.

- “Springs” capture spatial relationships.

Matching model to image involves 
joint optimization of part locations

“stretch and fit”



Local evidence + global decision

• Parts have a match quality at each image location.

• Local evidence is noisy.

- Parts are detected in the context of the whole model.

part

test image match quality



Matching problem

• Model is represented by a graph G = (V, E).

- V = {v1,...,vn} are the parts.

- (vi,vj) ∈ E indicates a connection between parts.

• mi(li) is a cost for placing part i at location li.

• dij(li,lj) is a deformation cost.

• Optimal configuration for the object is L = (l1,...,ln) minimizing 

i=1
E(L) = ∑ mi(li) + ∑ dij(li,lj)

n

(vi,vj) ∈ E



Matching problem

• Assume n parts, k possible locations for each part.

- There are kn configurations L.

• If graph is a tree we can use dynamic programming.

- O(nk2) algorithm.

• If dij(li,lj) = g(li-lj) we can use min-convolutions.

- O(nk) algorithm.

- As fast as matching each part separately!

i=1
E(L) = ∑ mi(li) + ∑ dij(li,lj)

n

(vi,vj) ∈ E



• For each l1 find best l2:

- Best2(l1) = min [m2(l2) + d12(l1,l2)]
• “Delete” v2 and solve problem with smaller model.

- Let m1(l1) = m1(l1) + Best2(l1)

• Keep removing leafs until there is a single part left.

Dynamic Programming on Trees

v1

v2

i=1
E(L) = ∑ mi(li) + ∑ dij(li,lj)

n

(vi,vj) ∈ E



Min-convolution speedup

• Brute force: O(k2)  ---  k is number of locations.

• Suppose d12(l1,l2) = g(l1-l2):

- Best2(l1) = min [m2(l2) + g(l1-l2)]

• Min-convolution: O(k) if g is convex.

Best2(l1) = min [m2(l2) + d12(l1,l2)] v1

v2



Finding motorbikes

Model with 6 parts:
2 wheels

2 headlights
front & back of seat



Human pose estimation



Processing steps
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Match costs for each part 

DT of non-reference match costs - min-convolution with parabola

Sum shifted DTs and reference match cost

Find best location
 for reference



Multiscale models with HOG features

Model has a root filter plus deformable parts

root filter part filters deformation 
models

detection



Object configuration

Image pyramid HOG feature pyramid

Multiscale model captures features at two-resolutions

Score is sum of filter 
scores minus deformation 

costs



Score of hypothesis

• Let z be an object configuration:

- Specifies location for root and parts in HOG pyramid.

- Score is sum of filter scores minus deformation costs.

• Optimize using distance transforms:

- Compute best score for every possible placement of root.

- Report placements that lead to good score.

• Connection to linear classifier:

- Score of z on image x is W ⋅ Φ(x, z)



Training
• Training data consists of images with labeled bounding boxes.

• Need to learn the model structure, filters and deformation costs.

Training



Connection to linear classifier

w is a model
x is a detection window (range)
z are filter placements

concatenation of features 
and part displacements

concatenation of filters and 
deformation parameters

• Positive example specifies that score should be high for some 
configuration in a range.

• Negative example specifies that score should be low for all 
configurations in a range.



Latent SVMs

Linear in w if z is fixed

Regularization Hinge loss



Learned models

Bottle

Car

Bicycle

Sofa



Example results



More results


