Object detection and recognition

Example problems

Detecting rigid objects

Detecting non-rigid objects

Medical image analysis

Segmenting cells

Template matching

- "Appearance based method".
- Object of interest defined by a template.
- Compare template to image data under each possible shift.
 - Scale template or image to find objects of different sizes

Issues

- How to compare template to image?
 - Sum of squared differences, dot product, etc.
- What should we use as the template?
 - Cropped picture of the object.
 - Average of multiple pictures.
- How do we handle variation in appearance?
 - Variations due to pose, lighting, non-rigid objects, etc.
 - Don't compare image intensities directly.
 - Works well for certain classes of objects (face detection).

Image intensities

Histogram of Gradient (HOG) features

- Discretize gradient orientation at each pixel into 9 possible values.
- Image is partitioned into 8x8 pixel blocks.
- In each block we compute a histogram of gradient orientations.
 - 9 dimensional feature vector.
 - Invariant to changes in lighting, small deformations, etc.

Template matching with HOG features

- Templates define weights for features in rectangular window.
 - NxMx9 weights for a window of size NxM.
- Take dot product of template and subwindow of HOG pyramid.

Face detection

template

example result

Learning the template

• Suppose we have positive and negative examples:

$$-(x_1,y_1),...,(x_n,y_n)$$

- x_i is a subwindow of a HOG pyramid.
- $y_i = 1$ if subwindow contains a face
- $y_i = -1$ otherwise
- Look for template W such that every positive example scores higher than every negative example.
 - $(W \cdot x_i) > b$ if $y_i = 1$
 - $(W \cdot x_i) < b$ if $y_i = -1$

Linear classifiers

- Linear classifier:
 - Defined by a weight vector W and bias b.

-
$$(W \cdot x_i) > b$$
 if $y_i = 1$

-
$$(W \cdot x_i) < b$$
 if $y_i = -1$

• W and b define a hyperplane separating the positive and negative examples. W is the orientation, b is the distance from the origin.

Learning linear classifiers

- Given $(x_1, y_1), ..., (x_n, y_n)$
- Find hyperplane separating positive and negative examples
- Classical problem in pattern recognition/machine learning
 - Linear programming
 - Perceptron algorithm
 - Support vector machines

Training a face model

• Positive examples:

- Negative examples: random patches from images without faces
- Model learned with SVM:

Face detection

template

Deformable Models

- Template matching works well for faces but...
- How do we handle other types of objects
 - People, cars, etc.
 - Non-rigid objects, object categories, etc.
- Deformable models approach:
 - Consider each object as a deformed version of a template.

Pictorial Structures

- Introduced by Fischler and Elschlager in 1973.
- Part-based models:
 - Each part represents local visual properties.
 - "Springs" capture spatial relationships.

Matching model to image involves joint optimization of part locations "stretch and fit"

Local evidence + global decision

- Parts have a match quality at each image location.
- Local evidence is noisy.
 - Parts are detected in the context of the whole model.

Matching problem

- Model is represented by a graph G = (V, E).
 - $V = \{v_1,...,v_n\}$ are the parts.
 - $(v_i,v_j) \in E$ indicates a connection between parts.
- $m_i(l_i)$ is a cost for placing part i at location l_i .
- $d_{ij}(l_i,l_j)$ is a deformation cost.
- Optimal configuration for the object is $L = (l_1,...,l_n)$ minimizing

$$E(L) = \sum_{i=1}^{n} m_i(l_i) + \sum_{(v_i, v_j) \in E} d_{ij}(l_i, l_j)$$

Matching problem

$$E(L) = \sum_{i=1}^{n} m_i(l_i) + \sum_{(v_i, v_j) \in E} d_{ij}(l_i, l_j)$$

- Assume *n* parts, *k* possible locations for each part.
 - There are k^n configurations L.
- If graph is a tree we can use dynamic programming.
 - $O(nk^2)$ algorithm.
- If $d_{ij}(l_i,l_j) = g(l_i-l_j)$ we can use min-convolutions.
 - O(nk) algorithm.
 - As fast as matching each part separately!

Dynamic Programming on Trees

$$E(L) = \sum_{i=1}^{n} m_i(l_i) + \sum_{(v_i, v_j) \in E} d_{ij}(l_i, l_j)$$

- For each l_1 find best l_2 :
 - Best₂(l_1) = min $\left[m_2(l_2) + d_{12}(l_1, l_2)\right]$
- "Delete" v_2 and solve problem with smaller model.
 - Let $m_1(l_1) = m_1(l_1) + \text{Best}_2(l_1)$
- Keep removing leafs until there is a single part left.

Min-convolution speedup

Best₂(
$$l_1$$
) = min $[m_2(l_2) + d_{12}(l_1, l_2)]$

- Brute force: $O(k^2)$ --- k is number of locations.
- Suppose $d_{12}(l_1, l_2) = g(l_1 l_2)$:
 - Best₂(l_1) = min $\left[m_2(l_2) + g(l_1-l_2)\right]$
- Min-convolution: O(k) if g is convex.

Finding motorbikes

Model with 6 parts:

2 wheels

2 headlights

front & back of seat

Human pose estimation

Processing steps

DT of non-reference match costs - min-convolution with parabola

Sum shifted DTs and reference match cost

Find best location for reference

Multiscale models with HOG features

Model has a root filter plus deformable parts

Object configuration

Multiscale model captures features at two-resolutions

Score of hypothesis

- Let z be an object configuration:
 - Specifies location for root and parts in HOG pyramid.
 - Score is sum of filter scores minus deformation costs.
- Optimize using distance transforms:
 - Compute best score for every possible placement of root.
 - Report placements that lead to good score.
- Connection to linear classifier:
 - Score of z on image x is $W \cdot \Phi(x, z)$

Training

- Training data consists of images with labeled bounding boxes.
- Need to learn the model structure, filters and deformation costs.

Training

Connection to linear classifier

- Positive example specifies that score should be high for some configuration in a range.
- Negative example specifies that score should be low for all configurations in a range.

w is a modelx is a detection window (range)z are filter placements

$$f_w(x) = \max_z w \cdot \Phi(x, z)$$

concatenation of filters and deformation parameters

concatenation of features and part displacements

Latent SVMs

$$f_w(x) = \max_z w \cdot \Phi(x, z)$$

Linear in w if z is fixed

Training data:
$$(x_1, y_1), ..., (x_n, y_n)$$
 with $y_i \in \{-1, 1\}$

Learning: find w such that $y_i f_w(x_i) > 0$

$$w^* = \operatorname*{argmin}_{w} \lambda ||w||^2 + \sum_{i=1}^n \max(0, 1 - y_i f_w(x_i))$$
Regularization Hinge loss

Learned models

Example results

More results

