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The problem of finding salient curves in images has a number of appli-
cations in computer vision. The saliency network [1] leads to a particularly
elegant computational procedure for finding salient curves. Below we give a
simplified description of the approach.

Let P be a set of points in the plane. Typically P would be the pixels
in an image. We assume that there is a fixed number of oriented segments
connecting each point in P to nearby points as illustrated in Figure 2. The
set of segments coming out of a point p corresponds to different orientations
that a curve can follow as it passes through the point. The set of all possible
oriented segments is denoted by S. A curve is represented by a sequence of
adjacent segments (sq,...,S,) as shown in Figure 3. We can think of P and
S as a directed graph. Curves are paths in this graph.

The saliency of a curve is a score that increases with the curve length and
decreases with its total curvature and “fragmentation”.

Figure 1: Salient curves found in the elephant image.



Figure 2: Example where there are 16 oriented segments leaving each point.
The set S is the union of all oriented segments.

Figure 3: Curves are sequences of adjacent segments. The picture shows a
curve formed by 4 segments.

Let o(s) be a measure of the local saliency of a segment s € S. Intuitively
o(s) should be high (positive) if there is evidence for a curve going throught
s, and low (negative) otherwise.

If we are looking for curves in grayscale images the value of o(s) could
depend on the magnitude and direction of the image gradient under s. There
is evidence for a curve going through s if the gradient at each pixel under s
has high magnitude and is nearly perpendicular to s.

Let ¢(s,t) be a measure of the orientation difference between segments s
and t. For example, we could define 9 (s,t) = (0(s) — 0(t))>.

The saliency of a curve (si,...,s,) can be defined in terms of the local
saliency of each segment in the curve and the orientation differences between
adjacent segments,

(81, 8) = Za(si) - HZ_I WV (siy Siz1)-

Note how this measure increases with the length of a curve and deacreases
with total curvature and fragmentation (here “gaps” in the curve can be
defined in terms of segments with negative local saliency).
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Let ®4(s) be the score of the most salient curve of length k starting at
segment s. Note that a curve of length k starting at s is defined by s and a
curve of length k — 1 starting at a segment ¢ that is adjacent to s. In fact,
we can show that

Or(s) =o(s) + max D1 (t) — Y(s, 1),

where the maximization is over segments ¢ that are adjacent to s. For the
base case we have ®(s) = o(s).

We can define the k-th saliency map as an image where the value of each
pixel is the score of the most salient curve of length k leaving that pixel,

My.(p) = max D (s).

Here the maximization is over segments leaving p. Note how the first saliency
map M (p) is similar to a local edge detector because the value of a pixel is
defined by the local saliency of segments leaving that pixel. As k increases
the k-th saliency map agregates information over longer and longer curves.
Eventually My(p) is high only at pixels that are in a salient curve.
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