
CS 281 – Homework 3

In this assignment, we will prove Gödel’s Incompleteness Theorem. No collaboration is
allowed. Please print your name on each sheet and try to make your solutions readable.
This assignment is due on Wednesday, April 30 at the beginning of class.

Definition 1. A first-order language consists of a domain (for example, the non-negative
integers), a set of operations (for example, +, *), a set of predicates (for example, =, <), a
set of constants chosen from the domain, and a set of axioms defining the meaning of the
operators and the predicates. For each theory we can define the language of true expressions
over the constants, operators, predicates, variables, the logical connectives (∧,∨,¬), and the
quantifiers (∃,∀).

Definition 2. (N, +, ∗, =, <, 0, 1), where N is the nonnegative integers, is known as number
theory. In addition to the symbols given, we are allowed to refer to logical connectives
(∧,∨,¬) and quantifiers (∃,∀). Note that we are not allowed to use any symbols or operations
other than those listed, such as indexing or modular arithmetic.

Theorem 1 (Gödel’s Incompleteness Theorem). The language of true expressions in number

theory is not decidable.

1. Encoding IDs as sequences of integers.

We encode our instantaneous description as a sequence of integers. An instantaneous
description has letters from the tape alphabet, which we can assume to be {0, 1},
and the state. It is easiest to write the instantaneous description as q, h,m, t0, . . . , tm,
where q is an integer representing the state, h is an integer giving the tape position,
and t0, . . . , tm are the contents of the non-blank tape squares.
Write a predicate that is true iff the ID describes a machine starting with a blank tape.
Write a predicate that is true iff the ID describes a machine in an accepting state.
These predicates will NOT be in number theory - you can use operations not allowed
by Definition 2. (In particular, you may use indexing.)

2. Encoding computations as sequences of sequences of integers

A computation is a sequence of instantaneous descriptions, I1, . . . , In, each of which
follows the previous one according to the rules of the Turing machine. We have a
sequence of 0’s and 1’s representing each instantaenous description, aij. Write down
a predicate that is true iff each step in the computation represented by a sequence
of sequence of integers proceeds correctly. A correct computation is one in which the
contents of the tape is unchanged except for the square under the head, and in which
the change of symbol under the head and change of state proceed according to the
rulebook of the Turing machine.
Again, this predicate will NOT be in number theory. (You may use indexing.) It should
be of constant size (that is, not depending on the number of steps in the computation



or on how long the tape gets during the computation). In particular, you cannot do
things like say ”the first ID moves to the second and the second moves to the third
and the third mvoes to the fourth...”. (You can, however, do something similar using
quantifiers.) Its size IS allowed to depend on the number of states used by the Turing
machine, since we regard this as a constant.

3. Encoding sequences of integers as integers

In this part we will stick sequences of integers together into one large integer in such
a way that we can recover the entire sequence using arithmetic.
Let m = max{n, x0, x1, . . . , xn}. Prove that the set of ui = 1 + (i + 1)m!, 0 ≤ i ≤ n,
are pairwise relatively prime and that ui > xi. This implies that there exists an integer
b < u0u1 · · ·un such that b ≡ xi (mod ui), 0 ≤ i ≤ n. We will use b as our encoding for
the sequence x0, x1, . . . , xn, and we will denote it by Sm(x0, x1, . . . , xn).

4. Encoding sequences as predicates

Express Gödel’s β function

β(b, c, i) = b mod (1 + (i + 1)c)

as a predicate in number theory. That is, write a statement about integers b, c, i, k

(using only the primitive symbols given in Definition 2) that is true iff β(b, c, i) =
k. The only problem with part 3 is that it uses the mod function. Note that
(Sm(x0, . . . , xn),m!, i) = xi, if we have m ≥ max{n, x0, x1, . . . , xn}.

5. Encoding a computation as a predicate

Argue that can you rewrite your predicate from part 2 so that it refers only to the
integer representing a computation. Use the encoding given by part 3 and part 4.
You should assume that no instantaneous description is longer than some constant m.
(Which is true for some sufficiently large m.) Now add your predicates from part 1, also
rewritten in the language of part 3 and part 4, so that we know that the computation
starts in the initial state with blank tape, and ends in the accepting state.
You don’t have to write all this out, but you should argue that you will end up with
a predicate in number theory, i.e., a predicate composed entirely of the symbols from
Definition 2. This predicate should be of constant length, not depending on the number
of steps in the computation or on m, the length of the longest ID.

6. Encoding computations as predicates

If a TM M accepts when started on blank tape, it does so by a computation in which
no ID is longer than some constant m. From step 5, we have a predicate Em(i), which
is true iff i is the integer representing a computation leading to acceptance of with no
ID longer than m.
The statement that M accepts , which is known to be undecidable, can be expressed
as ∃i∃m(Em(i)), where Em is a predicate that is true iff i is the binary encoding of a
computation leading to acceptance of ǫ with no ID longer than m. Argue that number
theory is undecidable.


