Algorithms – CMSC-37000

Loop invariants

Instructor: László Babai Ry-164 e-mail: laci@cs.uchicago.edu

Given an algorithm, a *configuration* is an assignment of values to each variable. A configuration is *feasible* if it can actually occur during the execution of the algorithm. Let \mathcal{C} denote the set of all configurations, whether feasible or not. We refer to \mathcal{C} as the *configuration space*.

For instance, a configuration for Dijkstra's algorithm would consist of a status value (white, grey, black), a cost value (a real number or ∞), and a parent link (possibly NIL) for each vertex, and a set Q (the priority queue; here we treat it simply as a set of keys).

A predicate over a set A is a Boolean function $f: A \to \{0,1\}$ (1: "true," 0: "false"). A transformation of A is a function $g: A \to A$.

Let P and Q be predicates over the configuration space \mathcal{C} and let S be a set of instructions, viewed as a transformation of \mathcal{C} . Consider the loop "while P do S." We say that Q is a loop-invariant for this loop if for all configurations $X \in \mathcal{C}$ it is true that

$$P(X)\&Q(X) \Rightarrow Q(S(X)). \tag{1}$$

In other words, if P&Q holds for the configuration X then Q also holds for the configuration S(X),

where S(X) is the configuration obtained from X by executing S.

Note that the highlighted statement has to hold even for infeasible configurations. This is analogous to chess puzzles: when showing that a certain configuration leads to checkmate in two moves, you do not investigate whether or not the given configuration could arise in an actual game.

Dijkstra's algorithm consists of iterations of a single "while" loop. Consider the following statements:

 $Q_1: (\forall u \in V)$ (if u is white then $c(u) = \infty)^1$.

 $Q_2: (\forall u \in V)(u \text{ is grey if and only if } u \in Q).$

 $Q_3: (\forall u, v \in V)$ (if u is black and v is not black then $c(u) \leq c(v)$).

 $Q_4: (\forall v \in V)(c(v) \text{ is the minimum cost among all } s \to \ldots \to v \text{ paths}$ that pass through black vertices only).

- 1. Prove that Q_1 and Q_2 are loop-invariants.
- 2. Prove that $Q_1 \& Q_2 \& Q_3$ is a loop-invariant.
- 3. Prove that $Q_1 \& Q_2 \& Q_3 \& Q_4$ is a loop-invariant.
- 4. Prove that $Q_1 \& Q_2 \& Q_4$ alone is *not* a loop-invariant. Explanation. You need to construct a weighted directed graph with nonnegative weights, a

¹In a previous version of this handout, Q_1 was erroneously stated as saying " $(\forall u \in V)(u$ is white if and only if $c(u) = \infty$)." Show that this statement is *not* a loop invariant.

source, and an assignments of all the variables (parent pointers, status colors, current cost values) such that Q_4 holds for your configuration, but Q_4 will no longer hold after executing Dijkstra's **while** loop. Your graph should have very few vertices.