Given an algorithm, a configuration is an assignment of values to each variable. A configuration is feasible if it can actually occur during the execution of the algorithm. Let \(C \) denote the set of all configurations, whether feasible or not. We refer to \(C \) as the configuration space.

For instance, a configuration for Dijkstra’s algorithm would consist of a status value (white, grey, black), a cost value (a real number or \(\infty \)), and a parent link (possibly NIL) for each vertex, and a set \(Q \) (the priority queue; here we treat it simply as a set of keys).

A predicate over a set \(A \) is a Boolean function \(f : A \to \{0, 1\} \) (1: “true,” 0: “false”). A transformation of \(A \) is a function \(g : A \to A \).

Let \(P \) and \(Q \) be predicates over the configuration space \(C \) and let \(S \) be a set of instructions, viewed as a transformation of \(C \). Consider the loop “while \(P \) do \(S \).” We say that \(Q \) is a loop-invariant for this loop if for all configurations \(X \in C \) it is true that

\[
P(X) & Q(X) \Rightarrow Q(S(X)).
\]

(1)

In other words, if \(P \& Q \) holds for the configuration \(X \) then \(Q \) also holds for the configuration \(S(X) \), where \(S(X) \) is the configuration obtained from \(X \) by executing \(S \).

Note that the highlighted statement has to hold even for infeasible configurations. This is analogous to chess puzzles: when showing that a certain configuration leads to checkmate in two moves, you do not investigate whether or not the given configuration could arise in an actual game.

Dijkstra’s algorithm consists of iterations of a single “while” loop. Consider the following statements:

\begin{align*}
Q_1 & : (\forall u \in V)(\text{ if } u \text{ is white then } c(u) = \infty) \footnote{In a previous version of this handout, \(Q_1 \) was erroneously stated as saying “(\(\forall u \in V \))(u \text{ is white if and only if } c(u) = \infty).” Show that this statement is not a loop invariant.}.
Q_2 & : (\forall u \in V)(u \text{ is grey if and only if } u \in Q).
Q_3 & : (\forall u, v \in V)(\text{ if } u \text{ is black and } v \text{ is not black then } c(u) \leq c(v)).
Q_4 & : (\forall v \in V)(c(v) \text{ is the minimum cost among all } s \rightarrow \ldots \rightarrow v \text{ paths that pass through black vertices only}).
\end{align*}

1. Prove that \(Q_1 \) and \(Q_2 \) are loop-invariants.
2. Prove that \(Q_1 \& Q_2 \& Q_3 \) is a loop-invariant.
3. Prove that \(Q_1 \& Q_2 \& Q_3 \& Q_4 \) is a loop-invariant.
4. Prove that \(Q_1 \& Q_2 \& Q_4 \) alone is not a loop-invariant. Explanation. You need to construct a weighted directed graph with nonnegative weights, a
source, and an assignments of all the variables (parent pointers, status colors, current cost values) such that Q_4 holds for your configuration, but Q_4 will no longer hold after executing Dijkstra’s while loop. Your graph should have very few vertices.