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8.1 Clustering

We will look at three techniques for data clustering:

1. k-means

2. hierarchical clustering

3. spectral clustering

8.1.1 k-means

We have studied this technique in the previous lecture. As a reminder, it is is a descent on a Least Squares
objective function.

8.1.2 Hierarchical Clustering

Given a set of n points in a metric space S,
x1, x2, ...xn ∈ S

we follow an iterative algorithm to find the clusters. For the first iteration, we merge the two closes points
into a single cluster. As a result, we are left with n-1 clusters. We need to iterate, but we need to know how
to compare clusters.

d(C1, C2) = maxx∈C1
d(x) where ∀x ∈ C1, d(x) = miny∈C2

d(x, y)

Alternatively, we can define it as an average:

Σx∈C1
d(x) = Σy∈C2

d(x, y)
= Σx∈C1

Σy∈C2
d(x, y)

At each level, we can associate a cost. For example, for some ”goodness” function g, Σn
j=1

g(j). If we let g

be the average distance between two points in a cluster, we have: 1

|Cj|
Σx,y∈Cj

d(x, y)

But, what happens in some pathological cases? Imagine two rings of points, where a smaller ring is inside
the larger ring. How would hierarchical clustering classify this set of points? Ultimately, clustering is a
topological feature of the data set.
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8.1.3 Spectral Clustering

Again, we are given a set of n points, x1...xn.
We have a symmetric matrix W defined as Wij = ”association” or ”similarity” between xi and xj .

We want to make a graph by connecting close points. Choose some ε > 0, and connect all points within ε of
each other.

For a geometric random graph G(n, ε), randomly sample n points and connect all points within ε of each
other.

Define Wij = 1 ⇔ ||xi − xj || < ε.

Consider cutting the graph in two. That is, we want to find a map b : V → {−1, 1} to find S = b−1(1) and
S = b−1(−1)

But, we want very few links between the two clusters. That is we want:
minbΣi∈S,j∈SWij

We want bT 1 = 0 (balanced cuts)

minbΣi∈S,j∈SWij = 1

4
Σn

i,j=1
Wij(bi − bj)

2 =

= bT Lb where L = D- W. L is the Laplacian of the graph and D is a diagonal matrix. Dii = ΣjWi,j

To prove this last equality,
Σn

i,j=1
Wij(bi − bj)

2 = Σn
i,j=1

Wij(b
2

i + b2

j − 2bibj) =

Σn
i,j=1

Wijb
2

i + Σn
i,j=1

Wijb
2

j − 2Σn
i,j=1

biWijbj=

Σib
2

i ΣjWij + Σjb
2

jΣiWij − 2bT Wb=

Σib
2

i D(i, i) + Σjb
2

jD(j, j) − 2bT Wb=
The first two terms are equal since W is symmetric. Thus, we have
2bT Db − 2bT Wb = 2bT (D − W )b = 2bT Lb

Finding the min cut is the same as minimizing the Laplacian.

The Laplacian is symmetric (both D and W are symmetric).
L is positive semi-definite : bTLb = ΣWij(bi − bj)

2 ≥ 0
L has real eigen values λ1 ≤ λ2...λn with associate eigen vectors v1...vn

Notice that the smallest eigen value λ1 = 0 and v1 = 1
(D − W )1 = D1 − W1 = 0 · 1
v2 ⊥ v1

Claim: minv⊥1v
T Lv = λ2

vT v1 = α1 = 0
Lv = Σn

i=2
α1Lv1

= Σn
i=2

αiλivi

Σα2

i λi = vT Lv = (Σαivi)
T (Σαiλivi)

Note: the multiplicity of λ = 0 is the number of connected components.

The difficult question is what is the value of k (number of clusters)?

1. p = Σk
i−1

αiN(µi, ε)
mixture of Gausiians.
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2. P has support on the manifold M = ∪k
i=iMi

if 2 connected components, you can discover the number of components if you sample enough

Suppose you have a manifold M ∈ Rn. If we compare with a graphs (discrete):

Graphs: G(V,E)

1. f : V → R

2. Lf = g

3. fT Lf = ΣWij(fi − fj)
2 (Stoke’s theorem on graphs)

4. Random walk on graph

Manifolds:

1. f : M → R

2. 4f = g

f : Rn → R

4f = Σn
i=1

∂2f

∂x2

i

3.
∫

M
f4f =

∫
M

< ∇f,∇f >=
∫

M
||∇f ||2 (Stoke’s theorem on graphs)

4. Brownian motion, or heat flow


