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Lecture 8: 02/06/2007

Lecturer: Partha Niyogi Scribe:  Nick Trebon

8.1 Clustering
We will look at three techniques for data clustering:

1. k-means
2. hierarchical clustering

3. spectral clustering

8.1.1 k-means

We have studied this technique in the previous lecture. As a reminder, it is is a descent on a Least Squares
objective function.

8.1.2 Hierarchical Clustering

Given a set of n points in a metric space S,

T1,Ta,..Tn €8

we follow an iterative algorithm to find the clusters. For the first iteration, we merge the two closes points
into a single cluster. As a result, we are left with n-1 clusters. We need to iterate, but we need to know how
to compare clusters.

d(C1, Cs) = mazgec, d(x) where Vo € Cy,d(z) = minyec,d(x,y)
Alternatively, we can define it as an average:

erCld(I) = Ey€C2d('rv y)
=Yzeo, EyECQd(‘T7 Y)

At each level, we can associate a cost. For example, for some ”goodness” function g, X g(j). If welet g
be the average distance between two points in a cluster, we have: ﬁEm)yecjd(a@, Y)
7 :

But, what happens in some pathological cases? Imagine two rings of points, where a smaller ring is inside
the larger ring. How would hierarchical clustering classify this set of points? Ultimately, clustering is a
topological feature of the data set.
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8.1.3 Spectral Clustering

Again, we are given a set of n points, x1...z,
We have a symmetric matrix W defined as W;; = ”association” or ”similarity” between x; and x;.
Y J y J

We want to make a graph by connecting close points. Choose some € > 0, and connect all points within € of
each other.

For a geometric random graph G(n, €), randomly sample n points and connect all points within € of each
other.

Define W;; = 1 < |[|z; — zj|| < e

Consider cutting the graph in two. That is, we want to find a map b: V — {—1,1} to find S = b=*(1) and
S=b"1(-1)

But, we want very few links between the two clusters. That is we want:
minpXie g ;esWij
We want 71 = 0 (balanced cuts)

minyX,c s i csWij = 157,21 Wij (b; — b))% =

= bTLb where L = D W. L is the Laplacian of the graph and D is a diagonal matrix. D;; = ;W ;
To prove this last equality,

Wlﬂ(b bJ)2: z] 1WZJ(b2+b2_2bb>

Y= Wiib? + E” 1Wwbj 2571 biWijbi=

Si028, Wi + ;b3 i Wij — 20" Wb=

> sz(z i)+ b2D(j,j) — 26T W=

The first two terms are equal since W is symmetric. Thus, we have

206" Db — 26T Wb = 267 (D — W)b = 2bT Lb

1]1

Finding the min cut is the same as minimizing the Laplacian.

The Laplacian is symmetric (both D and W are symmetric).
L is positive semi-definite : ¥T'Lb = SW;;(b; — b;)? >0
L has real eigen values Ay < Ao...\, with associate eigen vectors v1...v,

Notice that the smallest eigen value A\; =0 and v; =1
(D-W)1=D1-W1=0-1
V2 1 U1

Claim: min, 19T Lv = As
vTo,=a; =0

Lv =X 504 Lvy

= 2?:2041')\1"01'

Yaz\; = vl Lo = (Sayv) T (S \v;)

Note: the multiplicity of A = 0 is the number of connected components.

The difficult question is what is the value of k (number of clusters)?

L. b= EfflaiN(,uive)
mixture of Gausiians.
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2. P has support on the manifold M = UF_, M;
if 2 connected components, you can discover the number of components if you sample enough

Suppose you have a manifold M € R". If we compare with a graphs (discrete):
Graphs: G(V,E)

1. f: V>R

. Lf=g
. fTLf =SW;;(fi — f;)? (Stoke’s theorem on graphs)

w N

4. Random walk on graph

Manifolds:

—_

. f:M—>R

. Af=g
f:R"—R
Af=xr, L

=1 61'12

[\

w

Sy fAf = [y, < VYV >= [, IVf]]? (Stoke’s theorem on graphs)

4. Brownian motion, or heat flow



