CMSC35000-1 Introduction to Artificial Intelligence

Winter 2007

Lecture 8: 02/06/2007

Lecturer: Partha Niyoqi Scribe: Nick Trebon

8.1 Clustering

We will look at three techniques for data clustering:

- 1. k-means
- 2. hierarchical clustering
- 3. spectral clustering

8.1.1 k-means

We have studied this technique in the previous lecture. As a reminder, it is is a descent on a Least Squares objective function.

8.1.2 Hierarchical Clustering

Given a set of n points in a metric space S,

$$x_1, x_2, ... x_n \in S$$

we follow an iterative algorithm to find the clusters. For the first iteration, we merge the two closes points into a single cluster. As a result, we are left with n-1 clusters. We need to iterate, but we need to know how to compare clusters.

$$d(C_1, C_2) = \max_{x \in C_1} d(x)$$
 where $\forall x \in C_1, d(x) = \min_{y \in C_2} d(x, y)$

Alternatively, we can define it as an average:

$$\Sigma_{x \in C_1} d(x) = \Sigma_{y \in C_2} d(x, y)$$

= $\Sigma_{x \in C_1} \Sigma_{y \in C_2} d(x, y)$

At each level, we can associate a cost. For example, for some "goodness" function g, $\sum_{j=1}^{n} g(j)$. If we let g be the average distance between two points in a cluster, we have: $\frac{1}{|C_j|} \sum_{x,y \in C_j} d(x,y)$

But, what happens in some pathological cases? Imagine two rings of points, where a smaller ring is inside the larger ring. How would hierarchical clustering classify this set of points? Ultimately, clustering is a topological feature of the data set.

8.1.3 Spectral Clustering

Again, we are given a set of n points, $x_1...x_n$.

We have a symmetric matrix W defined as W_{ij} = "association" or "similarity" between x_i and x_j .

We want to make a graph by connecting close points. Choose some $\epsilon > 0$, and connect all points within ϵ of each other.

For a geometric random graph $G(n, \epsilon)$, randomly sample n points and connect all points within ϵ of each

Define $W_{ij} = 1 \Leftrightarrow ||x_i - x_j|| < \epsilon$.

Consider cutting the graph in two. That is, we want to find a map $b: V \to \{-1,1\}$ to find $S = b^{-1}(1)$ and $\overline{S} = b^{-1}(-1)$

But, we want very few links between the two clusters. That is we want:

 $min_b \Sigma_{i \in S, j \in \overline{S}} W_{ij}$

We want $b^T 1 = 0$ (balanced cuts)

 $min_b \Sigma_{i \in S, j \in \overline{S}} W_{ij} = \frac{1}{4} \Sigma_{i,j=1}^n W_{ij} (b_i - b_j)^2 =$

 $= b^T L b$ where L = D- W. L is the Laplacian of the graph and D is a diagonal matrix. $D_{ii} = \Sigma_j W_{i,j}$ To prove this last equality,

 $\sum_{i,j=1}^{n} W_{ij}(b_i - b_j)^2 = \sum_{i,j=1}^{n} W_{ij}(b_i^2 + b_j^2 - 2b_i b_j) =$

 $\Sigma_i b_i^2 D(i,i) + \Sigma_j b_i^2 D(j,j) - 2b^T W b =$

The first two terms are equal since W is symmetric. Thus, we have

 $2b^{T}Db - 2b^{T}Wb = 2b^{T}(D - W)b = 2b^{T}Lb$

Finding the min cut is the same as minimizing the Laplacian.

The Laplacian is symmetric (both D and W are symmetric).

L is positive semi-definite: $bTLb = \sum W_{ij}(b_i - b_j)^2 \ge 0$

L has real eigen values $\lambda_1 \leq \lambda_2...\lambda_n$ with associate eigen vectors $v_1...v_n$

Notice that the smallest eigen value $\lambda_1 = 0$ and $v_1 = 1$

$$(D - W)1 = D1 - W1 = 0 \cdot 1$$

 $v_2 \perp v_1$

Claim:
$$min_{v\perp 1}v^TLv = \lambda_2$$

 $v^Tv_1 = \alpha_1 = 0$
 $Lv = \sum_{i=2}^n \alpha_1 Lv_1$
 $= \sum_{i=2}^n \alpha_i \lambda_i v_i$

 $\Sigma \alpha_i^2 \lambda_i = v^T L v = (\Sigma \alpha_i v_i)^T (\Sigma \alpha_i \lambda_i v_i)$

Note: the multiplicity of $\lambda = 0$ is the number of connected components.

The difficult question is what is the value of k (number of clusters)?

1.
$$p = \sum_{i=1}^{k} \alpha_i N(\mu_i, \epsilon)$$
 mixture of Gausiians.

2. P has support on the manifold $M=\cup_{i=i}^k M_i$ if 2 connected components, you can discover the number of components if you sample enough

Suppose you have a manifold $M \in \mathbb{R}^n$. If we compare with a graphs (discrete):

Graphs: G(V,E)

1.
$$f: V \to R$$

$$2. Lf = g$$

3.
$$f^T L f = \sum W_{ij} (f_i - f_j)^2$$
 (Stoke's theorem on graphs)

4. Random walk on graph

Manifolds:

1.
$$f: M \to R$$

2.
$$\triangle f = g$$

 $f: R^n \to R$
 $\triangle f = \sum_{i=1}^n \frac{\partial^2 f}{\partial x_i^2}$

3.
$$\int_M f \triangle f = \int_M <\nabla f, \nabla f> = \int_M ||\nabla f||^2$$
 (Stoke's theorem on graphs)

4. Brownian motion, or heat flow