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6.1 Supervised learning

• Neural Networks / Perceptrons

• Decision trees

• Nearest Neighbor

• Math Programming

6.1.1 Kernel-based methods

Definition 6.1 A Kernel K is defined as K : (Rk × R
k) → R.

K is (a) symmetric: ∀x,yK(x, y) = K(y, x) and (b) positive definite: ∀z1,...,zn∈XKi,j = K(zi, zj) > 0.

A positive definite matrix is a Hermitian matrix all of whose eigenvalues are positive.

∀x, define K(x, •) as Kx : R
k → R

The linear combinations of these functions
∑

αiKxi gives a linear space of functions. We define an inner
product for this space:

Given g = Kx, h = Kz,

< g, h >=< Kx,Kz >= K(x, z) (6.1)

<
∑

αxKx,
∑

βzKz >=
∑

αxβzK(x, z) (6.2)

The set of linear functions Hk is the Reproducing Kernel Hilbert Space associated with kernel K:

Examples of Kernels

• Linear kernel: K(x, y) = xT y, Kx(y) = xT y

Kx(x) + Kz(y) = xT y + xT z = (x + z)T y,
So ||Kw|| =< Kw,Kw >= wT w = ||w||2

• Polynomial kernel: K(x, z) = (xT z)d

Hk = {polynomials of degree d}

• Gaussian kernel: K(x, y) = e
−
‖x − y‖

σ2
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6.2 Unsupervised learning

Given unlabled data x1, . . . ,xn, we intend to discover some natural structure of this data.

Examples:

• Density Estimation (Statistics)

• Clustering / Categorization

– K-means

– Hierarchical

– Spectral

6.2.1 K-means clustering

Algorithm to partition data into k clusters, where k is given in advance.

Pseudocode for k-means:
Input: x1,x2, . . . ,xn ∈ R

N

1. Pick the initial centroid of group: u1, . . . ,uk ∈ R
N (Each ui can be selected at random.)

2. Assign each point to the cluster of closest centroid: xi → arg minl ‖ xi − ul ‖

3. Recompute k centroids as means of each partitions Xi: ui := 1

|Xi|

∑
x∈Xi

x

4. Repeat Steps 2 and 3 until the centroids remain unchanged, or change is minimal.

We want to minimize the following measure of tighness of the partitions, where a small value indicates that
the data is tightly clustered:

min
{u1,...,uk}
{X1,...,Xk}

k∑

i=1

∑

x∈Xi

||x − ui||
2

For each partition Xi we want to find:

min
{u}

∑

x∈Xi

||x − u||2

Note that: ∑

x∈Xi

||x − u||2 =
∑

x∈Xi

(x − u)T (x − u) =
∑

x∈Xi

xT x − 2uT x + uT u

We take the partial derivative of the above sum:

δ

δu

∑

x∈Xi

xT x − 2uT x + uT u = 0

(−2
∑

x∈Xi

x) + (2u
∑

x∈Xi

1) = 0

u =
∑

x∈Xi

x

|X|


