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Decision Tree and Generalization

4.1 Decision Tree

Notation:

Data point (xi, yi), where 0 ≤ i ≤ n, xi ∈ Rk and y ∈ {+1,−1}. Let X = {x1, · · · , xn} and Y = {+1,−1}.
xi(j) is the value of the jth dimension of vector xi. Hypothesis space H. P is distribution on X × Y .

Bayesian deterministic function is defined as

fp(x) = sign(E[y|x]) = sign(P (y = +1|x)− P (y = −1|x)) (4.1)

If fp(x) is linear, we can use Perceptron classifier to learn the function. But fp(x) could also be nonlinear,
in which case we have to find some nonlinear classifiers.

Decision tree is such a method that can learn nonlinear function fp(x). In decision tree T, each node is one
question, which is a mapping q : X(j) → Y . And each leaf represent label yi ∈ Y . The hypothesis space
here is H = {q}. Therefore, decision tree is a mapping T : X → Y .

How can we build a decision tree based on a given training dataset? One choice for tree building is sets of
hyperplanes

H = {w · x} (4.2)

Another choice is
H = {(j, t)|j ∈ 1 · · · k, t ∈ R} (4.3)

where t is a threshold value for the jth dimension of x. For any xi ∈ X,

yi(j) =
{

+1 if xi(j) > t
−1 if xi(j) ≤ t

(4.4)

How to choose node ? We can use impurity function to select mapping for each node. Let’s introduce
impurity function first.

Let D denote pair (xi, yi), where i = 1 · · ·n. Then we have

P (D) =
#yi|yi = +1

n
(4.5)

When P (D) = 0 or P (D) = 1, we call D homogeneous set.

One choice for impurity function I(P(D)) is entropy.

I(P ) = Entropy(P ) = P log(
1
P

) + (1− P ) log(
1

1− P
) (4.6)
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Another choice might be I(P ) = P (1− P ).

Assume for some node, our question is q, by which we divide D into D+1 and D−1, where D+1 = {(xi, yi) ∈
D|q(xi) = +1}, and D−1 = {(xi, yi) ∈ D|q(xi) = −1}. Then the impurity function of D and q is

I(q, D) =
| D+1 | I(P (D+1))

| D |
+
| D−1 | I(P (D−1))

| D |
(4.7)

By minimizing I(q, D) we can find q for current node.

q = arg min
q∈H

{I(q, D)} (4.8)

The error rate for decision tree will be

e(D) =
#errors

| D |
=
| D+1 | (1− P (D+1))

| D |
+
| D−1 | (1− P (D−1))

| D |
(4.9)

When each training data point corresponds to one leaf, error rate of decision trees is zero. If n, the size
of training data, is quite large, size of decision will be large too. Note: min error at each node does not
guarantee to get min error for the whole decision tree. This is similar to the local minima and global minima
problem.

4.2 Generalization

Many techniques for classification can achieve zero error rate.

1. Linear Classifier : if data is linear separable, we can achieve 0 error rate. If data is nonlinear distributed,
then we can also get 0 error rate by increasing data dimension.

2. Multiplier Perceptron Classifier : by increasing hidden units and hidden layers, we can get 0 error rate.

3. Nearest Neighbor Classifier : for training data points, in fact there is no error at all.

One common feature of them is that they reduce errors by increasing the complexity of classifiers. For linear
classifier, increasing dimension means we have more parameters for the extra dimensions. More hidden units
and hidden layers in MPL introduce more parameters. Nearest Neighbor Classifier partition vector space
into n cells. With more labeled data, the number of cells will increase.

Definition 4.1 Empirical error is defined as

Iemp(h) =
1
n

n∑
i=1

| yi − h(xi) | , h ∈ H (4.10)

This error is based on training data only. By minimizing Iemp(h), we can have

ĥn = arg min
h∈H

{Iemp(h)} (4.11)

Definition 4.2 Best error is defined by expectation
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I(h) = E[| y − h(x) |] (4.12)

By minimizing I(h) we have
h∗ = arg min

h∈H
{I(h)} (4.13)

We are interested in that when n →∞, what is the difference between ĥn and h∗. As data is provided more
and more, we hope ĥn gets closer and closer to h∗. If ĥn → h∗ when n →∞, then

| I(ĥh)− Iemp(ĥn) |→ 0 (4.14)

So in this case, empirical error will converge to best error. This means ĥn is consistent with h∗.

For these 0 error classifier, e.g. Nearest Neighbor, we can achieve Iemp(ĥ) = 0. But as we know,
I(ĥ) ≥ Bayesian error rate, so

| I(ĥn)− Iemp(ĥn) |6= 0 (4.15)

This shows that 0 error rate classifiers can not be generalized. These classifiers will not perform better in
the future.

Assume ∃ep, gp, ep = E[| y − gp(x) |] = I(gp), s.t. (∀f : x → y) (I(gp) ≤ I(f)). So gp(x) is the optimal
classifier based on the true distribution. Now we have three kinds of classifier. One is ĥn, which is obtained
from equation (4.11). One is h∗, obtained from equation (4.13). And the optimal classifier gp. From the
definition, it is clear that

(∀h ∈ H)(Iemp(ĥn) ≤ Iemp(h∗)) (4.16)

(∀h ∈ H)(I(h∗) ≤ I(ĥn)) (4.17)

And we also know
(∀h ∈ H)(I(gp) ≤ I(h)) (4.18)

Recall that I(h) = E[| y − h(x) |] and Iemp(h) = 1
n

∑n
i=1 | yi − h(xi) |. Let z =| y − h(x) |. Then from law

of large number

(∀ε > 0)(P (| 1
n

n∑
i=1

zi − E[z] |> ε) ≤ 2e−ε2n) (4.19)

This is equivalent that with probability ≥ 1− 2e−ε2n, Iemp(h) −→ I(h) as n →∞. (more generalization in
next lecture)

Note: equation (4.15) gives a nice explanation about 0 error classifiers can not be generalized. Assuming in
some ideal case, Bayesian error is 0, then Iemp(ĥn) = 0 might be optimal, which means it may perform the
same best in the future. But in fact Bayesian error is not 0(or we are only interested in that case), which
means error can not be avoided in the future (this is true even for human beings), then current classifier is
not consistent in the future.


