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1 Additional Methods for Finding w?

In Lecture 1, we discussed the Perceptron Learning Algorithm (PLA) as a method to find
w? and proved it’s convergence as a limit with the number of mistakes. In Lecture 2 we
briefly discussed two other methods of finding w?: the least squares methods and linear
programming. While these show alternative methods of finding w?, we still do not have a
justification for merits of w?.

1.1 Least Squares

As before, we have i = 1 . . . n (xi, yi) pairs where y ∈ {−1, 1} and x ∈ R
D. The PLA will not

stop if there is no separating hyperplane. However, if we find minw

∑
(yi − w · xi)

2. We can
solve this linear system of equations for to find w. We are not assured of finding a separating
hyperplane, but we are assured the algorithm will stop.

1.2 Math Programming/Linear Programming

We want w such that yi(w · xi) ≥ 1. For each data point, we have n linear constraints and
we want to minimize w · w such that yi(w · xi) ≥ 1. It follows directly that the distance to

the ith points is yi(w·xi)
||w||

We can always find such an w if we are strictly greater than 1. Consider w such that
yi(w · xi) > 1, ∀i. If w′ = αw then we can choose an α such that α(yi(w · xi)) ≥ 1.

We want to find a w? such that ∃i such that yi(w? · xi) = 1, then

1

||w?||
= min

i

yi(w? · xi)

||w?||
= dist. to nearest point, the margin

1
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2 Formal Definition of Classifier

In pattern recognition problems, we are given a set of objects chosen at random from a
pattern space X, and we have to classify each object into a class from a set of classes Y (we
will consider Y = {1,−1} for now).

Example 2.1 We can take the pattern space to be the set of all pictures, and the set we
want to recognize the set of all pictures which correspond to my grandmother. If we say X
is the set of all n× n pixel pictures, we can represent X by assigning a real number value to
each pixel. In this case X = R

n2
.

We can also do some pre-processing on the input, called feature extraction, in which we
pick out from the raw data the relevant features

Example 2.2 We can look at speech recognition. Here the raw data is a function x(t) (the
wave function). As our pattern space X we can choose the set of all such wave functions,
but this might be hard to work with. Instead we can look at some features such as power=
1
T

∑T

t=1 x(t)2, periodicity (we assign a real number, close to 1 if the wave is periodic, and
closer to 0 if the wave is more noisy), and possibly other features. Then we can say that our
pattern space X is the space of all these features.

We also assume that there exists a probability distribution P over X, according to which
elements of the pattern space are drawn:

P (x|y = 1)

is the probability that a specific pattern x ∈ X (a picture in our example) is the next pattern
we perceive, knowing that it will be one of the elements we’re trying to identify (a picture
of my grandmother in our example). Similarly, we define

P (x|y = −1)

to be the probability distribution over patterns that are not what we’re trying to identify. We
also must assume that our probability distribution also specifies P (y = 1), and P (y = −1).

Let Z = X × Y , we can define P on an element of Z by Bayes’s formula:

P (x, y) = P (y)P (x|y).

Definition 2.3 A classifier is a function

f : X −→ Y.



3

3 Error rate of a classifier and optimal classifiers

Now that we laid down the formal definitions, we can try to answer the question What is
an optimal classifier?. In order to answer this question we need to have a way of comparing
classifiers. For this purpose we define the error rate. To do this we first define a couple
useful sets.

Definition 2.4 If f is a classifier, let

X
(f)
1 = f−1(1) = {x|f(x) = 1}

X
(f)
−1 = f−1(−1) = {x|f(x) = −1}

Definition 2.5 We can define the error rate in one of several ways. First of all, we can
define the error rate to be

Err(f) =

∫

X
(f)
1

P (x)P (y = −1|x)dx +

∫

X
(f)
−1

P (x)P (y = 1|x)dx .

An alternative definition for error rate requires us to first define

e(f, z) =

{
1 if y 6= f(x)

0 if y = f(x)
(1)

Using this, we can define the error rate as

Err(f) = E[e(f, z)] =
∑

y=±1

∫

X

P (x, y)e(f, z)dx =

∫

X

P (x)e(f, z)dz = P (f makes a mistake) .

The optimal classifier will be arg minf Err(f). We can now define the question of finding
the best classifier within a specific class of functions H by arg minf∈H Err(f)

Definition 2.6

We define f∗ =
{

1 if P (y = 1|x) > 1/2 − 1 if P (y = −1|x) > 1/2 (2)

If P (y = 1|x) = 1/2 it doesn’t matter what we do. We call f∗ the Bayes classifier, or
discriminant function.
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Proposition 2.7 It seems intuitive that the classifier f∗ we just defined is the optimal clas-
sifier. Formally

Err(f) ≥ Err(f∗) ∀f

Proof

Let X1 = X
(f∗)
1 , and X−1 = X

(f∗)
−1 .

Now we can write the error rate of f as

Err(f) =

∫

X
(f)
1

T

X1

P (x)P (y = −1|x)dx +

∫

X
(f)
1

T

X−1

P (x)P (y = −1|x)dx

+

∫

X
(f)
−1

T

X1

P (x)P (y = 1|x)dx +

∫

X
(f)
−1

T

X−1

P (x)P (y = 1|x)dx

Noticing that

P (y = 1|x) = 1 − P (y = −1|x) = 1 − 2P (y = −1|x) + P (y = −1|x) ,

we can rewrite the sum of the first and the third term as

S1 =

∫

X
(f)
1

T

X1

P (x)P (y = −1|x)dx +

∫

X
(f)
−1

T

X1

P (x)P (y = −1|x)dx

+

∫

X
(f)
−1

T

X1

P (x)(1 − 2P (y = −1|x))dx .

But, by definition of f∗, P (y = −1|x) ≤ 1/2 on X1, therefore

+

∫

X
(f)
−1

T

X1

P (x)(1 − 2P (y = −1|x))dx ≥ 0 .

Moreover,
∫

X
(f)
1

T

X1

P (x)P (y = −1|x)dx +

∫

X
(f)
−1

T

X1

P (x)P (y = −1|x)dx

=

∫

X1

P (x)P (y = −1|x)dx .

So we have shown that

S1 ≥

∫

X1

P (x)P (y = −1|x)dx .
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Similarly, we can show that the sum of the second and the fourth terms gives us

S2 =

∫

X
(f)
1

T

X−1

P (x)P (y = 1|x)dx +

∫

X
(f)
−1

T

X−1

P (x)P (y = 1|x)dx

+

∫

X
(f)
−1

T

X−1

P (x)(1 − 2P (y = 1|x))dx ≥

∫

X−1

P (x)P (y = 1|x)dx .

So,
Err(f) ≥ Err(fx∗).

�

Let us note that since f∗ depends only on the probability distribution, then so does Err(f∗).
Since Err(f∗) = minf Err(f), Err(f∗) is unique. Moreover, if we assume that P (y = 1|x) 6=
1/2 ∀x, then f∗ is unique.

4 Inductive inference

In general, we assume that there exists a probability distribution P on Z = X × Y , but we
don’t know what this probability distribution is. Instead, we draw a set S = {z1, . . . , zn}
according to P , then we try to come up with a function based on these examples.

Definition 2.8 We define the training error as

Êrr(f) = 1/n
n∑

i=1

e(f, zi) .

Definition 2.9 We also define

f̂n = arg min
f∈H

Êrr(f) ,

where H is a class of functions chosen a priori.

Definition 2.10 We define the best in class classification as

fH = arg min
f∈H

Err(f) .
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Our hope is that the best classifier based on the training sets are close to the best in class
classifier, as our training set gets large. Formally, we hope that

f̂n −→ fH as n −→ ∞ .

The gap between Err(f̂n) and Err(f(H)) is called estimation error, or sampling error.

Even if we minimize the estimation error, there can still be an insurmountable gap due to
our choice of H. In fact there will always be a difference between Err(fH) and Err(f∗).
However, we have a tension between these two gaps: to reduce this gap, we would want to
make H as large as possible, to reduce the estimation error, we would want to make H as
large as possible. So it is often a matter of compromise to choose the best possible H.


