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HMM and Speech

16.1 Speech

The process of sound production by human is:
brain ⇒ mouth/lung/etc ⇒ sequences of articulacy gestures ⇒ sequences of articulacy shapes ⇒ sequences
of articulacy sound.

The configurations of the articulatory canal (from the larynx to the lips) determine the phoneme being
produced by the speech signal. Hence, given a speech signal, we can identify the constituent phonemes if
we have an accurate representation of the sequency of articulatory configurations. In other words, there is a
set of hidden variables that represent the phoneme-sequence in the signal. This is the intuition behind using
Hidden Markov Models for speech recognition.

One big problem in speech recognition is that the sounds for the same word by different people or even by
the same person may have different lengths in time during different uteerances. It is thus not appropriate
to deal with this problem in time space directly.

Hence, speech recognizers use Fourier transforms to convert the signal in time space into frequency space, and
use the limited bandwidth to frame the signal. (Human ears can only recognize sound in a fixed frequency
bandwidth: 20Hz-20000Hz).

Let the signal in time space be x(t), and in frequency space be X(ω). Then we can use vector F in frequency
space to represent x(t), where the ith element in vector F is

Fi =
∫ ωi

ωi−1

| X(ω) |2 dω (16.1)

16.2 HMMs

Assuming X: sequences of frequency vectors O1, · · · , OT , where Oi ∈ Rk, Y :{-1,+1}. Speech recognition
can be viewed as a classification problem from X to Y . Our aim is to find out P (O1, · · · , OT | − 1) and
P (O1, · · · , OT |+ 1).

What is an HMM?

A Hidden Markov Model is a finite state, first order Markov Chain. Assuming n state {1 · · ·n}, then we
have a n× n transition matrix A, where Aij = P (j|i). Let St be the state at time t, Ot be the observation
at time t, and t = 1 · · ·T . Let bi be a probability distribution on observable space O, where i = 1 · · ·n. πi

is the starting probability at state i. So an HMM is determined by λ = {A,b, π}.

Obs:
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P (O1, · · · , OT |λ) =
∑

S1···ST

P (O1, · · · , OT , S1, · · · , ST |λ) (16.2)

There are a total nT possible sequences of length T . The probability for each one can be computed by:

π(
T−1∏
i=1

bi(Oi)Ai,(i+1))bT (OT ) (16.3)

Two important problems need to be solved:

1. how can we calculate P (O1, · · · , OT |λ) efficiently ?

2. how can we find out the optimal state-sequences?

For the first problem, we can use Forward Algorithm. Define αt(i) = P (P (O1, · · · , Ot, St = i|λ). We omit λ
in the following part. So αt(i) = P (P (O1, · · · , Ot, St = i). Then we have the following results:

P (O1, · · · , OT ) =
∑n

i=1 αT (i)

α1(i) = P (O1, S1 = i) = πibi(Oi)

αt+1(i) = P (O1 · · ·Ot+1, St+1 = i)

=
∑n

j=1 P (O1 · · ·Ot+1, St = j, St+1 = i)

=
∑n

j=1 P (O1 · · ·Ot+1, St = j)P (St+1 = i, Ot+1|O1 · · ·Ot, St = j)

=
∑n

j=1 αt(j)P (St+1 = i|O1 · · ·Ot, St = j)P (Oi+1|St+1 = i, O1 · · ·Ot, St = j)

=
∑n

j=1 αt(j)Ajibi(Ot+1)

(16.4)

Therefore, we have the following equation

αt+1(i) =
n∑

j=1

αt(j)Ajibi(Ot+1) (16.5)

The total computation needed is: Tn2 additions and 2Tn2 multiplications. Therefore, it is a polynomial
algorithm.

In practice, people use a small window to frame the signal in time space, then convert it into frequency
vector using FFT.

From the above analysis we can see that the probability at time t + 1 can be efficiently computed based on
the result at time t. This implies a natural subproblem for the whole problem of computing the probability
of a observed sequence. We can use this natural subproblem to design a dynamic programming algorithm
to find the sequence of states that has the highest probability to generate the given sequences (more in the
next lecture).


