
CMSC35000-1 Introduction to Artificial Intelligence Winter 2007

Lecture 14: 02/22/2007
Lecturer: Partha Niyogi Scribe: Zhandos Yessenbayev

14.1 Context Free Grammar

Let N = {S, X, Y, Z, ...} be a set of non-terminals with distinguished non-terminal S, and T = Σ be a set
of words (terminals).
A Context Free Grammar is a formal grammar with a finite set of the production rules of the form A → φ,
where A ∈ N and φ ∈ {NUT}∗

A language defined by this grammar consists of all possible strings that can be generated by the rules of the
grammar.

e.g.: N = {S}, T = {a, b}
S → aSb
S → ab

This grammar produces the strings of the form akbk

To formalize the set of rules, we require it to be in the Chomsky Normal Form:
A → BC
A → a,
where A,B,C - non-terminals, and a - teminal symbol. For instance, we can represent the rules in the example
above as follows:
S → AB
A → a
B → aSB’
B’→ b
So, in general, a rule of the form A → φ with φ = φ1φ2 can be represented by the set of the new rules
A → BC
B → φ1

C → φ2

Thus, we can represent recursively any set of rules as a set of rules in a Chomsky normal form by introducing
new non-terminal elements. From now on we can assume that all grammars are given in Chomsky normal
form
So, given a grammar G and a string S, the next question is ”Does there exist a unique parse tree for this
sentence?” Since, in general, the answer is ”No”, then ”How many parse trees are there if there is any?”
Finding all parse trees is interesting, because we can not only verify and understand the grammatical struc-
ture of the sentence but also see if it is ambiguous. For example, consider a sentence like ”I saw the man
with the binocular”. It is not clear whether the phrase ”with the binocular” describes ”the man” or refers
to the mean by which ”the man” was seen, but both cases are grammatically correct.

14-1

14-2 Lecture 14: 02/22/2007

14.1.1 X-bar Theory

Consider a grammar that have three types of phrases:
Prepositional phrase: with a spoon, over the table
Noun phrase: the man with the binocular
Verb phrase: ate the apple, picked the ball

for which the rules are defined as follows:
XP → X YP
X → X YP
X → X

Then the claim of this theory is that the head of the X-phrase is X (the head of the phrase).
According to this, the sentence

He ran from there with his money
can be parsed like

He (ran (from there) (with his money))

If this is the case for the English language, which has SVO (Subject+Verb+Object) structure, it may not
be for the other languages, moreover, the sentence itself may be grammatically incorrect.
So, returning to the question whether the given sentence S has a parse tree (equivalently, whether it is
grammatically correct) or not, let us estimate the complexity of this question on the following example.

Suppose we have the rules
S → Z Z
Z → Z Z
Z → AB
B → CD
B → b
A → C’D’
A → a
C → b
D → b
C’ → a
D’ → b

Clearly, for this grammar the string ab2 can be obtained in two different way from Z, for instance, either
S → Z Z, Z → A B, A → a, B → C D, C → b, D → b
or
S → Z Z, Z → A B, A → C’D’, B → b, C’ → a, D’ → b

But then it turns out that the string ab2ab2...ab2 with k ab2 substrings in it can have at least 2k parse trees,
since each ab2 can be obtained from a single Z. And this, consequently, means that it is a quite difficult
problem to find a proper parse tree among the exponential number of possible trees for the given sentence.

14.1.2 A Chart Parse

Let S = α1α2...αn, where αi ∈ Σ and | S |= n. Suppose we are given a grammar with M production rules
in Chomsky normal form, i.e. the rules are of the form:

Lecture 14: 02/22/2007 14-3

A → BC
A → a
where A,B,C ∈ {A1, A2, ..., AL} - a set of all non-terminals, a - terminal symbol.
Then for each non-terminal Ak we define a matrix of size nxn such that Ak[i, j] = 1 ⇔ Ak covers the
subsequence αiαi+1...αj (i ≤ j). So, ultimately, we want to verify if S[i,j]=1.
Having said this, we begin building all the matrices recursively as follows:
1) Initialize all the matrises Ak with zeros: Ak[i, j] = 0 ∀i, j, k;
2) Ak[i, i] = 1, if there exists a rule of the form Ak → αi, ∀i, k;

3) Next we run:
for all k ∈ {1, 2, ..., L}

for all i ∈ {1, 2, ..., n}
for all j ≥ i

Ak[i, j] = 1 ⇔ if there exists a rule Ak → BC and i ≤ l ≤ j s.t. B[i, l − 1] = 1 and C[l − 1, j] = 1
end

end
end

So, after this loop we fill up all the upper triangles of each of the matrices Ak. The complexity of the
algorithm, as it is easy to see, is of order O(L · M · n3), that is, the algorithm runs in polynomial time.

14.1.3 A Stochastic Grammar

Another way to approach the problem is to assign a probability distribution P on a given language L ⊂ Σ∗

s.t. ΣP (S) = 1, for all S ∈ L. The rationale of this is that even though a sentence may be perfectly
grammatical, it is more unlikely to appear in the common language (e.g. archaisms).
On the other hand, rather than assigning a probability to each sentence in the language, which is impractical
because of infinite size of L, we can assign a probability distribution on a set of rules that define the grammar:
A1 → B1C1 (p1)
A2 → B2C2 (p2)
...
Am → BmCm (pm)
where pi ≥ 0 for all i ∈ {1, 2, ...,m} and Σpi = 1.
Given this, it is clear that if S has a parse tree then

P (parse) =
∏

node∈parse

pi(node),

and in case of the existence of several parse trees we get:

P (S) =
∑

∀parseofS

P (parse),

Example:
Let G be a grammar with rules:
S → SS (p)
S → a (1-p)

14-4 Lecture 14: 02/22/2007

It is obvious that this grammar consists of the strings ai(1 ≤ i), then as we said before

∞∑

i=1

P (ai) = 1,

which holds only for p > 1

2
. This fact can be verified from the following recurrence relation:

Sh+1 = (1 − p) + pSh, S1 = 1 − p

where Sh is the probability of generating a tree of height ≤ h.

