
CMSC 22610
Winter 2007

Implementation
of

Computer Languages

Project 3
February 6, 2007

MinML typechecker
(Revised 2007-02-14)

Due: February 21, 2007

1 Introduction

The third part of the project is to implement a typechecker for MinML. The typechecker is respon-
sible for checking that a given program is statically correct. The typechecker takes a parse tree (as
produced by your parser) as input and produces a typed abstract syntax tree (AST). The AST in-
cludes information about the types and binding sites of variables. We will provide a sample scanner
and parser, but you may also use your solution from Part 2.

The bulk of this document is a formal specification of the typing rules for MinML. The type
system for MinML is essentially a stripped down version of the SML type system and supports
polymorphism with Hindley-Milner type inference. For a discussion of how to implement Hindley-
Milner type inference, see Handout 5.

2 Syntactic restrictions

There are a number of syntactic restrictions that your typechecker should enforce. These restrictions
could be specified as part of the typing rules below, but it is easier to specify them separately.

1. The type parameters in a type or datatype definition must have distinct names.

2. The constructors in a datatype definition must have distinct names.

3. The variables in a pattern must have distinct names.

4. The functions in a recursive binding must have distinct names.

5. Integer literals must be in the range−230..230−1 (i.e., representable as a 31-bit 2’s-complement
integer).

3 Core syntax

The typing rules are given for a core of the concrete grammar, which is given in Figure 1. This
grammar omits specification of parenthization, associativity, and precedence. It also treats infix
operators as applications.

prog ::= exp
| topdcl; prog

topdcl ::= tydcl
| valdcl

tydcl ::= type (tyvar1, . . . , tyvark) tid= ty
| datatype (tyvar1, . . . , tyvark) tid= condcl1 | · · · | condcln

ty ::= tyvar
| (ty1, . . . , tyk) tid
| ty1->ty2

| ty1* · · ·*tyn

condcl ::= conid
| conidof ty

valdcl ::= val pat = exp
| fun fb1 and · · · and fbn

fb ::= vid pat = exp

exp ::= let valdcl in exp end
| case exp of match
| if exp1 then exp2 else exp3

| exp1 exp2

| exp1 = exp2

| (exp1, . . ., expn)
| exp1; exp2

| vid
| lit

match ::= match1 |match2

| pat => exp

pat ::= conid pat
| (pat1, . . ., patn)
| vid
| conid
| lit

Figure 1: Core MinML syntax

2

τ ::= α type variable
| (τ1, . . . , τk) T (k) type constructor
| τ1 → τ2 function type
| τ1 × · · · × τn tuple type

σ ::= ∀α1, . . . , αn.τ type scheme

Figure 2: MinML types

4 MinML types

In the MinML typing rules, we distinguish between syntactic types as they appear in the program
text and semantic types that are inferred for expressions and patterns. MinML’s semantic types are
formed from type variables, type constructors (including nullary type constructors such as int and
bool), the function-type constructor, and the tuple-type constructor. The abstract syntax of types
is given in Figure 2. Note that a k-arity type constructor has its arity as a superscript.

Since data constructors and variables can be polymorphic, we also define type schemes. We say
that a type τ is an instance of a scheme σ = ∀α1, . . . , αn.τ ′ if there exists a substitution S from
type variables to types with domain {α1, . . . , αn}, such that τ = S(τ ′). We write τ ≺ σ when τ is
an instance of σ.

5 Identifiers and environments

The typechecking rules of MinML use a number of environments to track binding information.
These environments are

TE ∈ ID → TYCON ∪ (TYVAR∗ × TY) type-name environment
TVE ∈ ID → TYVAR bound type variables

VE ∈ ID → (IDSTATUS × TYSCHEME) value-identifier environment

where TYVAR is the set of type variables (α), ID is the set of syntactic identifiers, TYCON is the set
of type constructors (T (k)), and TYSCHEME is the set of type schemes (σ). Value identifiers can be
constants (i.e., nullary data constructors), data-constructor functions, or variables. We use

s ∈ IDSTATUS = {c,d,v}

to distinguish between these, where c denotes a constant, d denotes a data-constructor function, and
v denotes a variable.

We define the extension of a finite map (environment) E by another environment E′ as

(E ± E′)(a) =
{

E′(a) when a ∈ dom(E′)
E(a) when a 6∈ dom(E′)

3

TE,VE ` prog ⇒ τ typechecking a program

TE,VE ` topdcl ⇒ TE′,VE′ typechecking a top-level declaration

TE,VE ` tydcl ⇒ TE′,VE′ typechecking a type declaration

TE,TVE ` ty ⇒ τ typechecking a type

TE,TVE, (~α, τ) ` condcl ⇒ VE typechecking a data-constructor definitions

VE ` valdcl ⇒ VE′ typechecking a value declaration

VE ` fb ⇒ VE′ typechecking a function binding

VE ` exp ⇒ τ typechecking a expression

VE ` match ⇒ (τ, τ ′) typechecking a match rule

VE ` pat ⇒ (VE, τ) typechecking a pattern

Figure 3: MinML judgment forms

6 Typing rules

The typing rules (or judgments) for MinML provide both a specification for static correctness of
MinML programs. The general form of a rule is

Context ` Term ⇒ Type

which can be read as “Term has Type in Context .” The context usually consists of one or more
environments, but may have other information, while the “Type” can be one or more types and or
environments. Figure 3 summarizes the judgement forms that we use for typing MinML.

6.1 Programs

The first rule for programs just threads the environment from left to right.

TE,VE ` topdcl ⇒ VE′,TE′ TE′,VE′ ` prog ⇒ τ

TE′,VE′ ` topdcl; prog ⇒ τ

When a program is just an expression, its type is that of the expression.

VE ` exp ⇒ τ

TE,VE ` exp ⇒ τ

6.2 Top-level declarations

Checking top-level declarations requires appealing to the appropriate declaration judgment form.

TE,VE ` tydcl ⇒ TE′,VE′

TE,VE ` tydcl ⇒ TE′,VE′

VE ` valdcl ⇒ VE′

TEVE ` valdcl ⇒ TE′,VE′

4

6.3 Type declarations

TVE = {tyvari 7→ αi | 1 ≤ i ≤ k and αi are fresh}
TE,TVE ` ty ⇒ τ TE′ = TE±{tid 7→ (〈α1, . . . , αk〉, τ)}

TE,VE ` type (tyvar1, . . . , tyvark) tid= ty ⇒ TE′,VE
The rule for datatype definitions is somewhat complicated. We check each of the constructor decla-
rations in a context that includes the type parameters and result type; these checks yield constructor
environments that are merged to produce the final constructor environment.

TVE = {tyvari 7→ αi | 1 ≤ i ≤ k and αi are fresh}
D = (〈α1, . . . , αk〉, (α1, . . . , αk) tid(k))

TE,TVE,D ` condcl1 ⇒ VE1 · · · TE,TVE,D ` condcln ⇒ VEn

TE′ = TE±{tid 7→ (α1, . . . , αk) tid(k)} VE′ = VE±VE1 ± · · · ±VEn

TE,VE ` datatype (tyvar1, . . . , tyvark) tid= condcl1 | · · · | condcln ⇒ TE′,VE′

6.4 Types

The typing rules for types check types for well-formedness and translate the concrete syntax of
types into the abstract syntax. The judgment form is

TE,TVE ` Type ⇒ τ

which should be read as: in the environments TE,TVE, the type expression Type is well-formed
and translates to the abstract type τ .

Typechecking a type variable replaces it with its definition.

tyvar ∈ dom(TVE) TVE(tyvar) = α

TE,TVE ` tyvar ⇒ α

There are two rules for type-constructor application, depending on whether the type ID names a type
definition or a datatype (or abstract type). For type definitions, we substitute the type arguments for
the type parameters to produces a new type:

tid ∈ dom(TE) TE(tid) = (〈α1, . . . , αk〉, τ)
TE,TVE ` ty1 ⇒ τ1 · · · TE,TVE ` tyk ⇒ τk

TE,TVE ` (ty1, . . . , tyk) tid ⇒ [τ1/α1, . . . , τk/αk]τ

For datatypes and abstract types, we check the arguments and mapping the type ID to the type
constructor.

tid ∈ dom(TE) TE(tid) = T (k) TE,TVE ` ty1 ⇒ τ1 · · · TE,TVE ` tyk ⇒ τk

TE,TVE ` (ty1, . . . , tyk) tid ⇒ (τ1, . . . , τk) T (k)

Type checking a function type requires checking the two sides of the arrow.

TE,TVE ` ty1 ⇒ τ1 TE,TVE ` ty2 ⇒ τ2

TE,TVE ` ty1->ty2 ⇒ τ1 → τ2

Type checking a tuple type requires checking the component types.

TE,TVE ` ty1 ⇒ τ1 · · · TE,TVE ` tyn ⇒ τn

TE,TVE ` ty1* · · ·*tyn ⇒ τ1 × · · · × τn

5

6.5 Data-constructor definitions

The typing rules for a nullary data-constructor is

σ = ∀α1, . . . , αk.τ

TE,TVE, (〈α1, . . . , αk〉, τ) ` conid ⇒ {conid 7→ (c, σ)}

and the rule for a data-constructor function is

TE,TVE ` ty ⇒ τ ′ σ = ∀α1, . . . , αk.τ
′ → τ

TE,TVE, (〈α1, . . . , αk〉, τ) ` conidof ty ⇒ {conid 7→ (d, σ)}

6.6 Value declarations

For a value binding, we check the pattern, which yields a variable environment and a type, and we
check the r.h.s. expression using the original environment. If the types match, we extend the value
environment with the bindings from the pattern. Note that, unlike in the SML type system, we do
not close over the type of the l.h.s.; in MinML, only data-type and function definitions introduce
polymorphism.

VE ` pat ⇒ (VE′, τ) VE ` exp ⇒ τ

VE ` val pat = exp ⇒ VE±VE′

Function bindings are tricky for two reasons: they are mutually recursive and we are allowed to
generalize their types. We use the auxiliary function NameOf to extract the function name from a
function binding.

VE′ = VE± {fi 7→ (v, τfi
) | fi = NameOf(fbi)}

VE′ ` fbi ⇒ τfi
for 1 ≤ i ≤ n

VE′′ = VE± {fi 7→ (v, σfi
) | σfi

= ClosVE(τfi
)}

VE ` fun fb1 and · · · and fbn ⇒ VE′′

6.7 Function bindings

Typechecking a function binding requires checking the parameter pattern and then using its bindings
to check the function body.

VE ` pat ⇒ (VE′, τ) VE±VE′ ` exp ⇒ τ ′

VE ` vid pat = exp ⇒ τ → τ ′

6.8 Expressions

Checking a let expression requires checking the value declaration and then using the enriched
environment to check the expression.

VE ` valdcl ⇒ VE′ VE′ ` exp ⇒ τ

VE ` let valdcl in exp end⇒ τ

Checking a case requires checking the type of the argument against the match.

VE ` exp ⇒ τ VE ` match ⇒ (τ, τ ′)
VE ` case exp of match ⇒ τ ′

6

The condition of an if expression must have boolean type and the types of the arms must agree.

VE ` exp1 ⇒ bool(0) VE ` exp2 ⇒ τ VE ` exp3 ⇒ τ

VE ` if exp1 then exp2 else exp3 ⇒ τ

Function application requires checking the argument against the function’s type.

VE ` exp1 ⇒ τ → τ ′ VE ` exp2 ⇒ τ

VE ` exp1 exp2 ⇒ τ ′

Typechecking the equality operator requires a special rule, because equality is an ad hoc polymor-
phic operator.

VE ` exp1 ⇒ τ VE ` exp2 ⇒ τ τ ∈ {bool(0), int(0), string(0)}
VE ` exp1 = exp2 ⇒ bool(0)

The type of an empty tuple expression is unit(0).

VE ` ()⇒ unit(0)

The type of a tuple expression is the tuple of the types of its sub-expressions.

VE ` expi ⇒ τi for 1 ≤ i ≤ n

VE ` (exp1, . . ., expn)⇒ τ1 × · · · × τn

Expression sequencing ignores the type of the l.h.s. expression

VE ` exp1 ⇒ τ1 VE ` exp2 ⇒ τ2

VE ` exp1; exp2 ⇒ τ2

The type of a value identifier is determined by its binding in the value environment. Note that this
rule covers constants, data constructors, and variables.

vid ∈ dom(VE) VE(vid) = (s, σ) τ ≺ σ

VE ` vid ⇒ τ

We use the auxiliary function TypeOf to map literals to their types (i.e., int(0) and string(0)).

TypeOf(lit) = τ

VE ` lit ⇒ τ

6.9 Match rules

All of the matches in a case must have the same argument and result type, which is reflected in the
rule for sequencing matches.

VE ` match1 ⇒ (τ, τ ′) VE ` match2 ⇒ (τ, τ ′)
VE ` match1 |match2 ⇒ (τ, τ ′)

Checking an match rule requires checking the r.h.s. expression in an environment enriched by the
bindings from the l.h.s. pattern.

VE ` pat ⇒ (VE′, τ) VE±VE′ ` exp ⇒ τ ′

VE ` pat => exp ⇒ (τ, τ ′)

7

6.10 Patterns

Typechecking a pattern yields a new environment, which assigns types to the variables bound in the
pattern, and the type of values matched by the pattern.

Constructor application requires matching the argument pattern against the constructor’s type.

conid ∈ dom(VE) VE(conid) = (d, σ) τ → τ ′ ≺ σ VE ` pat ⇒ (VE′, τ)
VE ` conid pat ⇒ (VE′, τ ′)

The type of an empty tuple pattern is unit(0).

VE ` ()⇒ ({},unit(0))

Non-empty tuple patterns require merging the bindings from each sub-pattern.

VE ` pat i ⇒ (VEi, τi) for 1 ≤ i ≤ n VE′ = VE1 ± · · · ±VEn

VE ` (pat1, . . ., patn)⇒ (VE′, τ1 × · · · × τn)

Value identifiers introduce new bindings.

vid ∈ dom(VE) and VE(vid) = (s, ·) ⇒ s = v VE′ = {vid 7→ (v, τ)}
VE ` vid ⇒ (VE′, τ)

Nullary constructors must be verified.

conid ∈ dom(VE) VE(conid) = (c, σ)
VE ` conid ⇒ ({}, τ)

Literals are checked using the same TypeOf function as for expressions.

TypeOf(lit) = τ

VE ` lit ⇒ ({}, τ)

7 Predefined types and operators

Your typechecker will typecheck programs in the context of an initial basis TE0,VE0. This basis
is defined as follows:

TE0 =



bool 7→ bool(0)

int 7→ int(0)

list 7→ list(1)

string 7→ string(0)

unit 7→ unit(0)



8

The initial value environment defines the types of the operator symbols and some additional func-
tions.

VE0 =



false 7→ (c,bool(0))
true 7→ (c,bool(0)

nil 7→ (c,∀α.α list(1))
:: 7→ (d,∀α.(α× α list(1)) → α list(1))
<= 7→ (v, (int(0) × int(0)) → bool(0))
< 7→ (v, (int(0) × int(0)) → bool(0))
@ 7→ (v,∀α.(α list(1) × α list(1)) → α list(1))
+ 7→ (v, (int(0) × int(0)) → int(0))
- 7→ (v, (int(0) × int(0)) → int(0))
* 7→ (v, (int(0) × int(0)) → int(0))

div 7→ (v, (int(0) × int(0)) → int(0))
mod 7→ (v, (int(0) × int(0)) → int(0))

˜ 7→ (v, int(0) → int(0))
fail 7→ (v,∀α.string(0) → α)

print 7→ (v, string(0) → unit(0))


8 Derived forms

Some forms in the concrete syntax are defined in terms of a simple translation. This section de-
scribes these translations.

The parsing syntax allows multiple value bindings in a let expression. These can be translated
into nested lets by repeated application of the following rule:

let valdcl1 valdcl2 in exp end = let valdcl1 in
let valdcl2 in exp end

end

The operators andalso and orelse are translated to if expressions as follows:

exp1 andalso exp2 = if exp1 then exp2 else false

exp1 orelse exp2 = if exp1 then true else exp2

9 Requirements

9.1 Errors

Your typechecker should implement the above type system and report reasonable error messages.
Errors that you should catch include violations of the syntactic restrictions in Section ??, unbound
identifiers, and any type errors.

9

9.2 Submission

We will set up a SVN repository for each group on the gforge server. This repository will be
seeded with CVS modules for each of the projects. For this project, the SVN module is named
project-3 and contains the sample scanner and parser implementation. We will also provide the
implementation of the AST representation. You should use this repository to hold the source for your
project. We will collect the projects at 10pm on Wednesday February 21st from the repositories, so
make sure that you have committed your final version before then.

10 Document history

Feb. 14 Added unit type to initial basis and rules for empty tuple expressions and patterns. Also
fixed typos in a couple of pattern rules.

Feb. 8 Added syntax and typing rule for equality.

Feb. 7 Merged value and data-constructor environments and added IDSTATUS. Fixed minor typos
and added desugaring rule for let expressions.

Feb. 6 Original version.

10

