
CMSC 22610
Winter 2007

Implementation
of

Computer Languages

Project 2
January 18, 2007

MinML parser
Due: February 2, 2007

1 Introduction

Your second assignment is to implement a parser for MinML. You may either use ML-Yacc or ML-
Antlr to generate your parser from an specification. ML-Yacc is described in Chapter 3 of Appel’s
book and there is a link to the manual on the course web page. ML-Antler is a new tool that supports
LL(k) parsing. Its manual is also available from the course web page. The actions of this parser will
construct a parse tree representation for an MinML program. We will provide an ML-Lex based
scanner and the definition of the parse-tree representation, or you may use your own scanner.

2 The MinML grammar

The concrete syntax of MinML is specified by the grammar given in Figures 1 and 2.

As written, this grammar is ambiguous. To make this grammar unambiguous, the precedence of
operators must be specified. The precedence of the binary operators are (from weakest to strongest):

orelse
andalso
= <= <
@ ::
+ -

* div mod

All binary operators are left associative except “@” and “::,” which are right associative. The next
highest precedence is function application, which associates to the left. Here are some examples:

a + b * c + d ≡ (a + (b * c)) + d
a + 1 :: b :: [] ≡ (a + 1) :: (b :: [])
hd l x y ≡ ((hd l) x) y

3 Requirements

Your implementation should consist of the following five files:

Prog
::= (TopDecl ;)∗ Exp

TopDecl
::= type TypeParamsopt tyid = Type
| datatype TypeParamsopt tyid = ConsDecl (| ConsDecl)∗

| ValueDecl

TypeParams
::= tyvar
| (tyvar (, tyvar)∗)

Type
::= TupleType -> Type
| TupleType

TupleType
::= AtomicType (* AtomicType)∗

AtomicType
::= tyid
| tyvar
| AtomicType tyid
| (Type (, Type)∗) tyid
| (Type)

ConsDecl
::= conid (of Type)opt

ValueDecl
::= val TuplePat = Exp
| fun FunDef (and FunDef)∗

FunDef
::= vid TuplePat = Exp

Figure 1: The concrete syntax of MinML (A)

2

Exp
::= let ValueDecl+ in Exp (; Exp)∗ end
| if Exp then Exp else Exp
| case Exp of Match (| Match)∗

| Exp andalso Exp
| Exp orelse Exp
| Exp = Exp
| Exp <= Exp
| Exp < Exp
| Exp :: Exp
| Exp @ Exp
| Exp + Exp
| Exp - Exp
| Exp * Exp
| Exp div Exp
| Exp mod Exp
| Exp Exp
| ˜ Exp
| Const
| vid
| (Exp (, Exp)∗)
| (Exp (; Exp)∗)

Match
::= Pat => Exp

Pat
::= Const
| conid TuplePat
| TuplePat

TuplePat
::= AtomicPat
| (AtomicPat (, AtomicPat)∗)

AtomicPat
::= vid
| _

Const
::= num
| str
| conid

Figure 2: The concrete syntax of MinML (B)

3

MinML.cm — a CM sources file for compiling your project.

main.sml — An SML source file containing the definition a structure Main, that defines a func-
tion

val parseFile : string -> ParseTree.program

where ParseTree.program is the type of program parse trees. This function should open
the named source file, parse it, and return the resulting tree.

parse-tree.sml — An SML file containing a module ParseTree that defines the parse-tree
representation of MinML programs. We will provide this file.

either MinML.y or MinML.grm — An parser specification file for parsing MinML programs. If
you use ml-yacc, then your file should be called MinML.y and if you use ml-antlr, then it
should be called MinML.grm. The actions of this parser should construct parse tree nodes.

either MinML.l or MinML.lex — An lexer specification file for lexing MinML. If you use ml-
yacc for your parser, then you should use the ml-lex specification (MinML.l), while if you
use ml-antlr, then you should use the ml-ulex specification (MinML.lex). We will provide
these files, but you may modifiy it to match the terminals in your parser. You may also choose
to use a modified version of the lexer you wrote for Part 1 of the project, but it will require
some restructuring of the interface.

We will set up an SVN project for each student on the gforge server. This project will be seeded
with the files mentioned above. You should use this repository to hold the source for your project.
We will collect the projects at 10pm on Monday January 29th from the SVN repositories, so make
sure that you have committed your final version before then.

4 Document history

January 23, 2007 Changed due date to February 2.

January 18, 2007 Original version.

4

