
CMSC 22610
Winter 2007

Implementation
of

Computer Languages

Project 1
January 4, 2007

MinML lexer
Due: January 19, 2007

1 Introduction

Your first assignment is to implement a lexer (or scanner) for MinML, which will convert an input
stream of characters into a stream of tokens. While such programs are often best written using a
lexer generator (e.g., ML-Lex or Flex), for this assignment you will write a scanner from scratch.

2 MinML lexical conventions

MinML has four classes of token: identifiers, delimiters and operators, numbers, and string literals.
Tokens can be separated by whitespace and/or comments.

Type, constructor, and value identifiers in MinML can be any string of letters, digits, under-
scores, and quote marks, beginning with a letter. Identifiers are case-sensitive (e.g., foo is different
from Foo). The following identifiers are reserved as keywords:

and andalso case datatype div
else fun if in let
mod of orelse then type
val

MinML also has type variables, which are sequences of two or more identifier characters that begin
with a quote character.

MinML also has a collection of delimiters and operators, which are the following:

() = <= < ::
@ + - * = ˜
, ; |

Numbers in MinML are integers and their literals are written using decimal notation (without a
sign).

String literals are delimited by matching double quotes and can contain the following C-like
escape sequences:

\a — bell (ASCII code 7)
\b — backspace (ASCII code 8)
\f — form feed (ASCII code 12)
\n — newline (ASCII code 10)
\r — carriage return (ASCII code 13)
\t — horizontal tab (ASCII code 8)
\v — vertical tab (ASCII code 11)
\\ — backslash
\" — quotation mark

A character in a string literal may also be specified by its numerical value using the escape sequence
‘\ddd,’ where ddd is a sequence of three decimal digits. Strings in MinML may contain any 8-bit
value, including embedded zeros, which can be specified as ‘\000.’

Comments start anywhere outside a string with “(*” and are terminated with a matching “*)”.
As in SML, comments may be nested.

Whitespace is any non-empty sequence of spaces (ASCII code 32), horizontal or vertical tabs,
form feeds, newlines, or carriage returns. Any other non-printable character should be treated as an
error.

3 Requirements

Your implementation should include (at least) the following two modules:

structure MinMLLexer : MinML_LEXER
structure MinMLTokens : MinML_TOKENS

The signature of the MinMLLexer module is

signature MinML_LEXER =
sig
val lexer : ((char, ’a) StringCvt.reader)

-> (MinMLTokens.token, ’a) StringCvt.reader
end

The StringCvt.reader type is defined in the SML Basis Library as follows:

type (’item, ’strm) reader = ’strm -> (’item * ’strm) option

A reader is a function that takes a stream and returns a pair of the next item and the rest of the stream
(it returns NONE when the end of the stream is reached). Thus, lexer is a function that takes a
character reader and returns a token reader.

The signature of the MinMLTokens module should have the following form:

2

signature MinML_TOKENS =
sig
datatype token
= KW_and
| KW_andalso
| KW_case
| ...
| KW_val
| LP | RP
| LTEQ | LT
| DCOLON (* ’::’ *)
| AT | PLUS | MINUS | TIMES
| EQ | TILDE | COMMA | SEMI | BAR
| TYVAR of Atom.atom
| NAME of Atom.atom
| NUMBER of IntInf.int
| STRING of string

end

The tokens correspond to the various keywords, delimiters and operators, and literals. The NAME
token is for non-reserved identifiers and carries a unique string representation of the identifier. The
NUMBER and STRING tokens carry the value of the literal.

3

