
CMSC 22610
Winter 2007

Computer Language Implementation Homework 5
Due February 27

1. Recall the discussion of polymorphic typechecking in Handout 5. Assume that we have both
int and real as base types. To extend the typechecker to support overloaded functions on
integers and reals (e.g., “+”), we need to allow type variables that are restricted to be members
of some set. For example, the type of “+” could be written as

∀α ∈ {int,real}.(α× α) → α

We can model this by changing the representation of type-variable kinds:

and tvar_kind
= INSTANCE of ty
| UNIV of int
| NUMKIND

Give a modified version of the unification algorithm from Section 4 of Handout 5 that deals
with this new kind representation.

2. Consider the following lexically scoped language of integer expressions:

exp ::= NUM (1)

| VAR (2)

| exp1 where VAR = exp2 (3)

| exp1 + exp2 (4)

Give an attribute grammar that computes the value of an expression. You may assume that
NUM .value is the integer value of the numeric literal and that VAR.name is the name of
a variable. Your solution may use functional data structures, such as sets and finite maps.


