CMSC 22610 Implementation Handout 4
Winter 2007 of January 11, 2007
Computer Languages

The LOOP language

1 Introduction

This document describes a simple imperative language, called LOOP, that we will use as a running
example in class.

2 Lexical issues

We use “Identifier” to designate the lexical class of identifiers. Identifiers in LOOP follow the C
convention: they are formed from sequences of letters, digits, and underscores, and must start with
either a letter or underscore. LOOP has several reserved identifiers (or keywords), which are the
following:

begin bool do else end false if int not print then true while

We use “Number” to designate the lexical class of integer literals, which are written in decimal
notation without a leading sign. LOOP also has a collection of operators and punctuation characters:

= ; + - < <= == x / && I ()

Comments in LOOP are C style; they begin with a “/*” and end with a “x/.” Any character
not covered by the above rules is an error.

3 LOOP syntax

The syntax of LOOP programs is given by the following context-free grammar.

Program
= Block

Block
= (Declaration ;)* (Statement ;)"

Declaration
::= Type Identifier = Expression

Type
= bool
| int

Expression
= Expression | | Expression
| Expression && Expression
| Expression == Expression
| Expression < Expression
| Expression <= Expression
| Expression + Expression
| Expression — Expression
| Expression * Expression
| Expression / Expression
| = Expression
| not Expression
| (Expression)
| Identifier
| Number

Statement
n= skip

| Identifier = Expression

| if Expression then Statement else Statement

| while Expression do Statement

| print Expression

| begin Block end

The syntax of expressions is disambiguated using precedence and associativity. All binary operators
are left associative and have the following precedence (from lowest to highest):

| Lowest precedence
&

A —

< <=
+ -—
* / Highest precedence

The unary operators (— and not) have higher precedence than the binary operators.

4 Static semantics

The typing rules of LOOP are simple. Variables must be declared before use; their scope runs from
their declaration to the end of the block in which they are declared. A variable may only be declared
once in a given block, but a variable with the same name may be redeclared in a nested block.
Variables and expressions have either integer or boolean type. The equality operator accepts either
boolean or integer arguments and returns a boolean result. The types of the operators are as follows:

Il (bool X bool) — bool
&& (bool x bool) — bool
== : (bool xbool) — bool
== (int x int) — bool
< (int x int) — bool
<= (int x int) — bool

+ (int x int) — int

- (int x int) — int

* (int x int) — int

/ (int x int) — int

unary — int — int
not bool — Dbool

The typing rules for statements are straightforward too. The conditionals in if and while
statements must have boolean type and the two sides of an assignment must have the same type.
The argument to a print statement may be either a boolean or integer expression.

S Dynamic semantics

Execution of LOOP programs follows the obvious imperative semantics. Integer arithmetic is arbi-
trary precision. The only form of runtime error is a division by zero, which causes the program to
terminate with an error message.

6 Example

Here is a LOOP program for computing 5!.

int n = 5;
int i = 0;
int £ = 1;
while i < n do
begin
i=1i+ 1;
f =1 £;
end;
print f;

