
The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Dynamic Array

Dynamic Array

You will implement a DynamicArray ADT (Abstract Data Type), a C++ class that will
allow us to use a dynamic integer array without worrying about all the memory
management issues. To accomplish this, DynamicArray will have two private member
variables: a pointer to int (which will point to an array allocated in the heap) and the size
of the array. It is the responsibility of the DynamicArray class to correctly initialize these
private member variables and to make sure that they are always in a consistent state.

This dynamic array has the following characteristics:
➢ Its positions are numbered starting with 0, like C/C++ arrays.
➢ The array must grow to meet the user's needs. For example, if the user creates an

array of size 5, and the user then wants to assign a value to position 9, then
DynamicArray must automatically grow its size to 10.

➢ The values in the array can only be non-negative integers.
➢ Because the array can dynamically grow, there might be “empty positions”. For

example, if the user creates an empty array, assigns a value in position 0 and then
a value in position 4, the array will have size 5, but positions 1, 2, and 3 will be
“empty”. Empty positions will have value -1.

Page 1 of 5

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Dynamic Array

The class declaration is the following (DynamicArray.h in the provided files):

class DynamicArray
{

private:
int *a;
int s;

int grow(int s2); // Optional

public:
// Constructors
DynamicArray();
DynamicArray(int s);
DynamicArray(int *a2, int s2);
DynamicArray(const DynamicArray &da);
~DynamicArray();

// Member functions
int getSize(); // Already implemented
int setValue(int pos, int v);
int getValue(int pos, int &v) const;

// Operator overload
DynamicArray& operator=(const DynamicArray &da2);
bool operator==(const DynamicArray &da2) const;
friend ostream& operator<<(ostream &os, DynamicArray &da);
int& operator[](int pos);
int operator[](int pos) const;

};

(Note: The header file also includes some constant member variables not shown above)

To test your implementation, a main.cpp is provided. Running this program with a
correct DynamicArray implementation should yield the following:

FIRST ASSIGNMENT
Had to grow the array.

SECOND ASSIGNMENT
Had to grow the array.

THIRD ASSIGNMENT
Did not have to grow the array.

ARRAY A1: 37 -1 7 -1 23
ARRAY A2: 42 42 42 42 42
ARRAY A3: 42 42 42 42 42
ARRAY A4: 42 42 42 42 42

ACCESSING VALUES
Position 2: 7
Position out of range.

COMPARISONS

Page 2 of 5

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Dynamic Array

a1 and a2 don't have the same contents.
a1 and a3 don't have the same contents.
a2 and a3 have the same contents.

ASSIGNMENT
ARRAY A1: 37 -1 7 -1 23
ARRAY A2: 42 42 42 42 42
ARRAY A3: 42 42 42 42 42
ARRAY A4: 37 -1 7 -1 23

BRACKET OPERATOR
a1[2] = 7
a1[4] = 23
a1[10] = 100
ARRAY A1: 37 -1 7 -1 23 -1 -1 -1 -1 -1 100

Exercise 1 <<5 points>>

Implement the constructors and destructor:

/* Creates an empty array (size 0) */
DynamicArray();

/* Creates an array of size "s" */
DynamicArray(int s);

/* Initializes the array with the values of another array. The
 * constructor receives "a2" (the 'source array') and its size.*/
DynamicArray(int *a2, int s2);

/* Copy constructor. */
DynamicArray(const DynamicArray &da);

/* Destructor. */
~DynamicArray();

Exercise 2 <<10 points>>

Implement the setValue operation:

/* Modifies the values in position "pos" with new value "v".
 * Must return the following:
 * 0: Success. Did not need to grow the array.
 * 1: Success. Had to grow the array.
 * 2: Error. Specified position is < 0
 * 3: Error. Specified value is < 0
 */
int setValue(int pos, int v);

Take into account that setValue must grow the array if the user specifies a position that
is larger than the size of the array. For example, if the current size of the array is 5 and
the user specifies a value for position 14, then the array must grow to a size of 15. To

Page 3 of 5

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Dynamic Array

make your setValue implementation simpler, it might be useful to think of growing as a
separate operation:

/* Grows the array to size “s2”. This means copying the current array
 * to a new array of size “s2”, and filling all the new positions with
 * value -1 (empty positions).
 * /
int grow(int s2);

Implementing the grow function is optional (you can just include all the growing code
inside the setValue function).

Also, notice that setValue must return a status code. These status codes are already
defined as constant member variables in class DynamicArray:

static const int SET_OK_NOGROW = 0;
static const int SET_OK_GROW = 1;
static const int SET_ERROR_NEGPOS = 2;
static const int SET_ERROR_NEGVALUE = 3;

Exercise 3 <<5 points>>

Implement the getValue function:

/* Returns the value in position "pos" using parameter "v".
 * The function must return the following:
 * 0: Success.
 * 1: Error. A bad position was specified.
 */
int getValue(int pos, int &v) const;

Exercise 4 <<10 points>>

Overload the assignment and equality operators:

/* Assignment operator overload */
DynamicArray& operator=(const DynamicArray &da2);

/* Equality operator overload.
 * Returns true if both DynamicArrays are the same. We assume
 * that two DynamicArrays are the same if (a) they have the same
 * size and (b) they have the same value in every position. */
bool operator==(const DynamicArray &da2) const;

Page 4 of 5

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Dynamic Array

Exercise 5 <<5 points>>

Overload the shifting operator to print a DynamicArray to an output stream:

friend ostream& operator<<(ostream &os, DynamicArray &da);

Exercise 6 <<10 points>>

Overload the bracket operator:

int& operator[](int pos);
int operator[](int pos) const;

The bracket operator overload was not discussed in class, so you will have to read about
it on your own. You must overload the bracket operator in such a way that the user can
access a position in the dynamic array by using the bracket operator, instead of the
getValue function. For example:

int a[5] = {42,42,42,42,42};
DynamicArray a1(a,5);

cout << a1[3]; // Prints out 42

Note that the bracket operator in this case is not as safe as the getValue function, as
there is no way of returning a status code telling if the specified position is valid or not.
So, if the user specifies an non-existing position, the bracket operator must return it,
regardless of whether it exists or not (this mimics the behaviour of C/C++ arrays).

Finally, notice how there are two bracket operator overloads. One is used when the
DynamicArray is used as an l-value, and the other one when it is used as an r-value (you
will have to figure out which is which!). The r-value version must simply return the value
in the specified position, while the l-value version might have to grow the array so the
position will be valid.

int a[5] = {42,42,42,42,42};
DynamicArray a1(a,5);

cout << a1[3]; // R-Value version, prints out 42
a[1] = 5; // L-Value version, doesn't grow the array
cout << a1[3]; // R-Value version, prints out 5
a[10] = 37; // L-Value version, has to grow the array

Page 5 of 5

